Automation and Control IP 67 I/O Splitter Boxes

Catalog
January

(午) Telemecanique

Telefast ${ }^{\circledR}$, Telemecanique $^{\circledR}$, Zelio ${ }^{\circledR}$, Twido $^{\circledR}$, Modicon ${ }^{\circledR}$, ${ }^{\text {Phaseo }}{ }^{\circledR}$, TeSys $^{\circledR}$, Altivar ${ }^{\circledR}$, Premium ${ }^{\text {TM }}$, Advantys ${ }^{\text {TM }}$, and Quantum ${ }^{\text {TM }}$ are trademarks or registered trademarks of Schneider Electric. Other trademarks used herein are the property of their respective owners.

IP 67 passive splitter boxes

- Telefast® ${ }^{\text {® }}$ Distribution Systems, ABE9 splitter boxes.	. page 6, 7
- Characteristics .	page 8
- References	. . page 9
- Dimensions, Connections	age 10, 11

IP 67 monobloc I/O splitter boxes for fieldbuses

Selection guide

■ Advantys ${ }^{\text {m" }}$ Distributed I/O, FTB splitter boxes.

IP 67 modular I/O splitter boxes for fieldbuses

Selection guide page 34, 35

- Advantys ${ }^{\text {™ }}$ Distributed I/O, FTM splitter boxes page 36-39
- Advantys, FTM bus modules for CANopen ${ }^{T M}$ bus extensions page 40
\square Advantys, FTM bus modules for DeviceNet ${ }^{\text {TM }}$ bus extensions page 41
- Advantys, FTM bus modules for Profibus ${ }^{\text {TM }}$-DP bus extensions. page 42
- Connections page 43-45
ㅁ Characteristics page 46, 47
- References . page 48, 49
- Dimensions, Schemes .page 50, 51
Power supplies for d.c. control circuits
Selection guide page 52, 53
- Phaseo ${ }^{\circledR}$ modular regulated power supplies page 54
ㅁ Characteristics page 55
- Selection page 56
■ References, Dimensions, Schemes. . page 57
- Phaseo ${ }^{\circledR}$ regulated switch mode power supplies. page 58, 59
- Selection page 60-61 \& 66
ㅁ Characteristics page 62-65
- References page 67
- Dimensions . page 68, 69

Monobloc I/O splitter boxes and modules

Advantys ${ }^{\text {T" }}$ FTB splitter boxes

Fieldbus type
Number of inputs/outputs
Type of signal
Functions
Type of input/output connectors
Housing type
Module type
Pages

CANopen ${ }^{\text {TM }}$
DeviceNet
Profibus ${ }^{\text {TM }}$. -DP
InterBus ${ }^{\text {TM }}$
$16 \mathrm{I}, 8 \mathrm{I}+8 \mathrm{O}, 12 \mathrm{I}+4 \mathrm{O}, 16 \mathrm{I} / \mathrm{O}$, $8 \mathrm{I}+8 \mathrm{I} / \mathrm{O}$

Digital

Connection of 1 to 16 sensors/actuators

M12 (M8 connection available with T-connection accessory)

Plastic

ABE 9

9

Plastic	Metal

FB1

28

Presentation

ABE9 passive splitter boxes for M12 connectors make it possible to eliminate long and difficult cabling operations. Due to their modularity and their dimensions, they are the ideal solution for a wide variety of customer applications.
Connection to the processing unit can either be made by connector or by multicore cable of different lengths.
IP 67 protection allows these products to be used within processes or machines in harsh environments (splashing water, oil, dust, etc.).
The splitter boxes, available in 4 or 8 channel versions, allow connection of up to 16 signals maximum, depending on the version (2 per channel).

The characteristics of splitter boxes ABE 9C12 are as follows:
■ Connection of sensors and actuators using M12, 5-pin connectors.

- Modularity: 4 or 8 channels.
- Mounting system and connection to the processing unit conforming to market standards:
- mounting holes,
\square M23, 19-pin connector, enabling the use of pre-formed cables in order to reduce installation time and the risk of error,
- multicore cable, 5 or 10 meters (16.4 or 32.8 ft .) long. The splitter box comprises a connection cover fitted with plug-in terminals, which provides considerable flexibility for:
- the replacement of damaged parts, - modification of cable length.

Base units ABE 9C12eeLe๗ enable the use of 2 separate commons. This function is accessible beneath the terminal cover using 2 removable links. If both links are removed, the 2 supplies become independent.

The use of a Y-connector allows 2 signals to be connected to the same M12 channel on the splitter box.
Example: splitter box ABE 9C1281 (8 channels) enables the connection of 16 signals to the processing unit.

The Y-connector is available in 2 versions:
■ M12-M12 for connection of two M12 connectors to a single M12 channel on the splitter box,

- M8-M12 for connection of two M8 connectors to a single M12 channel on the splitter box.

Complete reference	$=$ Splitter box only	+ Connector with cable
ABE 9C1240L05	$=$ ABE 9C1240M	+ ABE 9XCA1405
ABE 9C1240L10	$=$ ABE 9C1240M	+ ABE 9XCA1410
ABE 9C1241L05	$=$ ABE 9C1241M	+ ABE 9XCA1405
ABE 9C1241L10	$=$ ABE 9C1241M	+ ABE 9XCA1410
ABE 9C1280L05	$=$ ABE 9C1280M	+ ABE 9XCA1805
ABE 9C1280L10	$=$ ABE 9C1280M	+ ABE 9XCA1810
ABE 9C1281L05	$=$ ABE 9C1281M	+ ABE 9XCA1805
ABE 9C1281L10	$=$ ABE 9C1281M	+ ABE 9XCA1810
Connector only		
ABE 9CM12C		

Description:	Characteristics:	References:	Connections:
page 7	page 8	page 9	page 10

Description

Passive splitter boxes ABE 9C12•eC23 have the following on the front face:
1 Four or eight M12 female connectors (depending on model) for connection of sensors and actuators (2 channels per connector).

2 Eight or sixteen channel status indicator lights (depending on model).
3 One "Power on" indicator light on the splitter box (depending on model).
4 One M23, 19-pin male connector.

5 Four or eight channel marker labels.

6 One splitter box marker label.
7 Splitter box mounting holes.

Passive splitter boxes ABE 9C12•eLe७ have the following on the front face:
1 Four or eight M12 female connectors (depending on model) for connection of sensors and actuators (2 channels per connector).

2 Eight or sixteen channel status indicator lights (depending on model).
3 Two "Power on" indicator lights on the splitter box (depending on model).
4 One removable connection cover fitted with plug-in terminals.
5 Four or eight channel marker labels.
6 One splitter box marker label.
7 Splitter box mounting holes.

Presentation:	Characteristics:	References:	Dimensions:
page 6	page 8	page 9	page 10

Characteristics, substitution

IP 67 passive splitter boxes
Telefast ${ }^{\circledR}$ Distribution System, ABE9 splitter boxes

Splitter box type			ABE 9C120C23	ABE 9C12•1C23	ABE 9C12e0Lee, ABE 9C1200M	ABE 9C12•1Lee, ABE 9C1201M
Environmental characteristics						
Product certifications			cULus			
Temperature	Operation	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \left({ }^{\circ} \mathrm{F}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-20 \text { to }+80 \\ & (-4 \text { to }+176) \\ & \hline \end{aligned}$			
	Storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & -40 \text { to }+85 \\ & (-40 \text { to }+185) \\ & \hline \end{aligned}$			
Degree of protection Conforming to IEC 529			IP 67			
Vibration resistance	Conforming to IEC 68-2-6, test Fc	Hz	$10 \leq \mathrm{f} \leq 57$ (constant amplitude $=1.5 \mathrm{~mm}$) $57 \leq f \leq 150$ (constant acceleration $=0.20 \mathrm{gn}$)			
Shock resistance Conforming to IEC/EN 68-2-2			30 gn , for 11 ms			
Insulation group	VDE 0110		Category 3			
Mounting			All positions			
Mechanical mounting			M4 screw mounting			
Channel characteristics						
Number of channels			4 or 8 (depending on model)			
Type of connection per channel			M12, 5-pin female connectors			
Nominal voltage		=-- V	24			
Current per channel		A	4 maximum			
Contact resistance		$\mathrm{m} \Omega$	5			
Power supply status indication			-	Green LED	-	Green LED
Channel status indication			-	Yellow LED	-	Yellow LED
Connection characteristics						
Type of connection			M23, 19-pin male connector		Multicore cable	
Total current in commons	$1 \mathrm{~mm}^{2}$ (18 AWG) supply wire	A	16			
	$0.75 \mathrm{~mm}^{2}$ (19 AWG) supply wire	A	12			
Separation of commons			Without		Without or with (by removing links BR1 and BR2, see connections on 11)	

Substitution table	
Previous range	New range
Splitter boxes with connection by M23 connector	
XZ LC1241C3	ABE 9C1241C23
XZ LC1240C3	ABE 9C1240C23
XZ LC1281C3	ABE 9C1281C23
XZ LC1280C3	ABE 9C1280C23
Splitter boxes with connection by cable	
XZ LC1241L5	ABE 9C1241L05
XZ LC1240L5	ABE 9C1240L05
XZ LC1241L10	ABE 9C1241L10
XZ LC1240L10	ABE 9C1240L10
XZ LC1281L5	ABE 9C1281L05
XZ LC1280L5	ABE 9C1280L05
XZ LC1281L10	ABE 9C1281L10
XZ LC1280L10	ABE 9C1280L10
Accessories	
XZ LG102	FTX CM12B
XZ LC1220C1	FTX CY1212

Presentation:	Description:	References:
page 6	page 7	page 9

FTXCY1208

References

Splitter boxes with connection by M23 connector

Number of channels	Connection by		LED indicator	Reference	Weight kg
4	$4 \times \mathrm{M} 12$ female connectors		With	ABE 9C1241C23	0.080
			Without	ABE 9C1240C23	0.080
8	$8 \times$ M12 female connectors		With	ABE 9C1281C23	0.140
			Without	ABE 9C1280C23	0.140
Splitter boxes with connection by cable					
Number of channels	Connection by	Length m (ft.)	LED indicator	Reference	Weight kg
4	$4 \times$ M12 female connectors	5 (16.4)	With	ABE 9C1241L05	0.680
			Without	ABE 9C1240L05	0.680
		10 (32.8)	With	ABE 9C1241L10	1.700
			Without	ABE 9C1240L10	1.700
8	$8 \times$ M12 female connectors	$5 \text { (16.4) }$	With	ABE 9C1281L05	1.610
			Without	ABE 9C1280L05	1.610
		10 (32.8)	With	ABE 9C1281L10	3.060
			Without	ABE 9C1280L10	3.060

Splitter boxes only, M12

Number of channels	For use with connector		LED indicator	Reference	Weight kg
	terminal	with cable			
4	ABE 9CM12C	ABE 9XCA14*๑	With	ABE 9C1241M	0.060
			Without	ABE 9C1240M	0.060
8	ABE 9CM12C	ABE 9XCA180๑	With	ABE 9C1281M	0.100
			Without	ABE 9C1280M	0.100

Separate components					
Type	No. of channels	For use with splitter box	Length m (ft.)	Reference	Weight kg
Terminal block connector (1)	-	ABE 9C124•M ABE 9C128•M	-	ABE 9CM12C	0.040
Connectors with cable	4	ABE 9C124@M	5 (16.4)	ABE 9XCA1405	1.060
			10 (32.8)	ABE 9XCA1410	2.080
	8	ABE 9C128•M	5 (16.4)	ABE 9XCA1805	1.510
			10 (32.8)	ABE 9XCA1810	2.240

Accessories

Description	Composition	Reference	Weight $\mathbf{k g}$
Sealing plugs	For M8 connector (lot of 10)	FTX CM08B	0.100
	For M12 connector (lot of 10)	FTX CM12B	0.100
Y-connectors	Connection of $2 \times$ M8 connectors to M12 connector on splitter box	FTX CY1208	0.020
Connection of $2 \times$ M12 connectors to M12 connector on splitter box	FTX CY1212	0.030	
Marker labels	Lot of 12	ABE 9XLA10	-

[^0]| Presentation: | Description: | Characteristics: | Dimensions: |
| :--- | :--- | :--- | :--- |
| page 6 | page 7 | page 8 | page 10 |

Dimensions, connections

IP 67 passive splitter boxes
Telefast ${ }^{\circledR}$ Distribution System, ABE9 splitter boxes

Dimensions
ABE 9C124•C23

ABE 9C1280C23

FTX CY1208

ABE 9C124eLe•

ABE 9C1280Le•

FTX CY1212

ABE 9C124•C23

ABE 9C128•C23

M23 connector

ABE 9C124Lee

(1) BR1 and BR2: removable link.

(1) BR1 and BR2: removable link.

Applications
Industrial fieldbus type

Degree of protection

Modularity (number of channels)	$8 \mathrm{I}+8 \mathrm{O}(8 \mathrm{O}+8$ diagnostic inputs $)$
	$12 \mathrm{I}+4 \mathrm{O}(4 \mathrm{I}+4 \mathrm{O}+8$ diagnostic inputs $)$
	$16 \mathrm{I}(8 \mathrm{I}+8$ diagnostic inputs $)$
	$8 \mathrm{I}+\mathrm{O}(8 \mathrm{I} / \mathrm{O}+8$ diagnostic $\mathrm{I} / \mathrm{O})$
	Voltage $(8 \mathrm{I}+8$ diagnostic I/O)
Inputs	Conformity to IEC 1131-2
Outputs	Voltage
	Cupe
	Current/output

Connection

Housing type

Diagnostics	Per splitter box
	Per channel

Module type

Page

CANopen

Presentation

To meet the needs of machine manufacturers and users, automation system architectures are becoming decentralized, while offering performances comparable to those obtained with a centralized structure.
Advantys FTB IP 67 monobloc I/O splitter boxes enable sensors and actuators to be connected in distributed automation systems using pre-assembled cables, thus reducing wiring time and costs, whilst at the same time increasing the operational availability of the installation.

These IP 67 protected splitter boxes can also be used within processes or machines in harsh environments (splashing water, oil, dust, etc.). For difficult environments (welding shops etc.), a range of Advantys FTB splitter boxes with a metal housing is available.

Advantys FTB splitter boxes allow distributed connection of sensors and actuators on machines via a fieldbus. They communicate on different buses such as: CANopen, DeviceNet, Profibus-DP and InterBus.
Sensors and actuators are connected by means of standard M12 connectors.
Configuration and parametering of the Advantys FTB splitter boxes is carried out using configuration files (e.g.: .eds files for CANopen):
■ either directly within the software workshop of the PLC used,
■ or by using a SyCon type configurator (refer to our Modicon ${ }^{\circledR}$ Premium ${ }^{\text {™ }}$ PLC automation platform catalog).

Advantys FTB splitter boxes are available with different input (-- 24 V IEC type 2) and output (transistor $=-24 \mathrm{~V} / 1.6 \mathrm{~A}$) configurations:

- Mixed 8 input and 8 output splitter boxes, allowing connection of either 8 sensors and 8 actuators or 8 actuators with integrated diagnostics function.
- Mixed 12 input and 4 output splitter boxes, allowing connection of either

12 sensors and 4 actuators or 4 sensors and 4 actuators with integrated diagnostics function.

- 16 input splitter boxes allowing connection of either 16 sensors or 8 sensors with integrated diagnostics function.
■ Mixed 16 input or output splitter boxes, configurable per channel, allowing all possible combinations: 16 inputs, 15 inputs/1 output, 14 inputs/2 outputs, to ., 16 outputs.

Functions

Selection of signal type per channel
■ Each M12, 5-pin connector on Advantys FTB splitter boxes allows the connection of 2 signals. Depending on the type of splitter box, these can be:

- 1 sensor input signal,
$\square 1$ diagnostic input signal,
- 1 actuator output signal.

Signal type, depending on splitter box selected:

	FTB	10016E	10008E08S	10012E04S	10016C	1Do08E08C
M12	Contact 4	Input	Output	0 to 3: Input 4 to 7: Output	Input Output	Input Output
	Contact 2	Input Diagnostic	Input Diagnostic	Input Diagnostic	Input Output Diagnostic	Input Diagnostic

$\overline{\text { Note: } \text { either a normally open (N/O) or a normally closed (N/C) contact can be chosen for each }}$ input signal.

Description, configuration:	Characteristics:	References:
pages $18,21,24$,	pages 26,27	pages $28-30$

Example of connection of a sensor with integrated diagnostics function

Example of connection of a standard sensor with the diagnostics adaptor

Diagnostics

Each Advantys FTB splitter box has one LED per channel to indicate the status of the channel and to enable fast and precise location of a fault. Fault monitoring diagnostics are indicated on the splitter box by LEDs and are fed back to the control system (PLC) via the bus.
There are 2 levels of diagnostics:

- diagnostics per channel,
- diagnostics per splitter box.

Diagnostics per channel

■ Sensor short-circuit

A short-circuit or overload on contact 1 of the M12 female connector blows the selfresetting fuse. Each M12 connector is individually protected. A red LED indicates the fault on the corresponding M12 connector. This fault is signalled to the Master. Supply to the sensors is automatically restored after elimination of the fault.

- Actuator short-circuit

A short-circuit or overload of an output causes disconnection of this output. The fault is signalled to the Master. A red LED indicates the fault on the corresponding M12 connector. The output does not restart automatically. After having eliminated the cause of the fault, the channel must be reset by the PLC. This operation erases the short-circuit memory.
■ Actuator warning
When the output is at state 0 , the contact corresponding to the M12 female connector is checked for presence of 24 V voltage. If +24 V is present, it means there is a "short-circuit". A red LED indicates the fault on the corresponding M12 connector. The fault is signalled to the Master.

Diagnostics per splitter box
■ Sensor/actuator supply status.
■ "Undervoltage" fault on the I/O supply.

■ Sensor short-circuit.

■ Actuator short-circuit.

Use of the sensor/actuator diagnostics function

Advantys FTB splitter boxes allow the use of sensors and actuators incorporating an integrated diagnostics function (DESINA type ■). Configuring contact 2 of each M12 connector as a diagnostic input enables detection of external faults associated with the sensors or actuators.
This information enables the following faults to be detected:

- damage to the detection surface,
- faulty electronics,
- no load.

Selection of either the sensor input or diagnostic input function on contact 2 is made channel by channel, by entering parameters, when configuring the splitter box.
Fault indication by a red LED is possible for each channel configured as a diagnostic input (LEDs 10 to 17).

Example of connection of a sensor with integrated diagnostics function: Using the M12 diagnostics adaptor accessory FTX DG12, it is possible to monitor breaks in wiring to sensors or actuators which do not have an integrated diagnostics function.

- DESINA - Standard relating to the connector technology of sensors, and actuators, established by the German Machine Tool Builder's Association.

Description, configuration:	Characteristics:	References:
pages 18,21,24,	pages 26,27	pages 28-30

IP 67 monobloc I/O splitter boxes for fieldbuses

Advantys ${ }^{\text {TM }}$ Distributed I/O, FTB splitter boxes
CANopen ${ }^{\text {TM }}$ and DeviceNet ${ }^{\text {TM }}$ bus extensions

Advantys FTB splitter boxes are of the monobloc type.
Each splitter box comprises one part for connection of sensors and actuators by means of M12 connectors, and one part for connection of splitter boxes on CANopen and DeviceNet fieldbuses.
These splitter boxes enable inputs/outputs to be located remotely, as close as possible to the equipment being controlled.

CANopen bus presentation

The CAN system, initially developed for real-time exchange of information in the automobile industry, is now being used more and more throughout industry. There are several fieldbuses based on CAN base layers and components.
The CANopen bus conforms to international standard ISO 11898, promoted by the "CAN in Automation" association (a grouping of manufacturers and users), and guarantees a high degree of openness and inter-operability due to its communication profiles and its standardized equipment.
The CANopen bus is now recognized, in Europe, as the reference standard for building industrial systems based on the CAN concept.
The CANopen bus is a Multimaster bus, based on the Master/Slave principle. The physical link consists of a shielded twisted pair, to which up to a maximum of 127 Slaves can be connected by simple tap-off. The binary rate varies, depending on the length of the bus, from $1 \mathrm{Mbits} / \mathrm{s}$ for 40 m (131.2 ft .) to $50 \mathrm{kbits} / \mathrm{s}$ for 1000 m (3281 ft.).
Each end of the bus must be fitted with a line terminator.
The CANopen bus is a set of profiles on CAN systems, possessing the following characteristics:
■ Open bus system.
■ Data exchanges in real-time without overloading the protocol.

- Modular design allowing modification of size.
- Interconnection and interchangeability of devices.
- Standardized configuration of networks.
- Access to all device parameters.
- Synchronization and circulation of data from cyclic and/or event-controlled processes (short system response time).
■ Exchanges possible with numerous international manufacturers.

Presentation, functions:	Description, configuration:	Characteristics:	References:
pages 14-17	pages 18,21,24,	pages 26,27	pages 28-30

DeviceNet bus presentation

DeviceNet Master

The DeviceNet system is a sensor/actuator bus system of the open Low-End type, used in various industrial applications and, in particular, the automobile industry. It is based on CAN technology (OSI layers 1 and 2).
The DeviceNet bus is based on the Master/Slave principle.
The physical link consists of 2 shielded twisted pairs (2 wires for data, 2 wires for auxiliary supply to sensors), to which up to a maximum of 63 slaves can be connected. The binary rate varies, depending on the length of the bus, from $500 \mathrm{kbits} / \mathrm{s}$ for 100 m (328.1 ft .) to $125 \mathrm{kbits} / \mathrm{s}$ for 500 m (1640 ft .).
Each end of the bus must be fitted with a line terminator.

Description

CANopen and DeviceNet monobloc I/O splitter boxes FTB 1CN and FTB 1DN have the following on the front face:

1 Eight M12 female connectors for connection of sensors and actuators (2 channels per connector).

Eight channel status indicator lights (00 to 07).
3 Eight channel status indicator lights (10 to 17) or channel diagnostic indicator lights (00 to 07) depending on the splitter box configuration.

4 Two 7/8 connectors for connecting the --- 24 V sensor and actuator power supplies: male for PWR IN, female for PWR OUT.

5 One M12 male connector (bus IN) and one M12 female connector (bus OUT) for connection of the CANopen and DeviceNet buses.

6 Access to coding and speed selection wheels.
7 Two bus diagnostic LEDs.
8 Two =-2 24 V sensor and actuator supply status LEDs.
9 Eight channel marker labels.
10 Two splitter box marker labels.
11 Splitter box functional ground connection (beneath the label).

Configuration

CANopen bus configuration

An .eds file is assigned to each product, which contains all the important information relating to the product. An icon (.dib for CANopen) is also available for installation in the system configurator.
Please refer to the configuration software documentation for the import of .eds files. Following the CANopen system initialization phase, all the Slaves signal their presence on the bus by means of a "Boot-Up" message. A setting-up configurator (e.g.: SyCon) can then start to read and register the CANopen bus and, on the basis of the data obtained, assign a corresponding .eds file to each Slave. Based on the .eds file data, the Master creates a peripheral image of all the Slaves detected by the PLC. The user can assign I/O bytes to logic addresses within the PLC.

- Addressing

The addresses are configurable from 1 to 99 by means of 2 coding wheels ($x 10$ and x 1). A 3rd coding wheel enables the data transmission speed to be selected (position 0 = automatic speed recognition from $125 \mathrm{kbits} / \mathrm{s}$ to $1 \mathrm{Mbits} / \mathrm{s}$).

DeviceNet bus configuration

An .eds file is assigned to each product, which contains all the important information relating to the product. An icon (.ico for DeviceNet) is also available for installation in the system configurator.
When the network is scanned, the identification data is compared with that of the Slaves present on the network and assigned accordingly. After the scanning phase, the scanner will have identified all the Slaves and saved information relating to data length and operating mode.
The DeviceNet bus Master establishes a peripheral image of all the devices detected on the DeviceNet bus and incorporates them according to their physical location in a Scan list. The user can then assign the Scan list, according to the peripheral image of the bus devices, to logic addresses in the PLC.

- Addressing

The addresses are configurable from 1 to 63 by means of 2 coding wheels (x 10 and $x 1)$. A 3rd coding wheel enables the data transmission speed to be selected
(3 speeds can be selected: 125, 250 and $500 \mathrm{kbits} / \mathrm{s}$).

Presentation, functions:	Description, configuration:	Characteristics:
pages 14-17	pages 18,21,24,	References:

Cabling system

Master

Cabling accessories

CANopen and DeviceNet bus connection cables

Cables FTX CN32ee enable connection of splitter boxes FTB 1CN and FTB 1DN to CANopen and DeviceNet fieldbuses.
1 FTX CN32ee: cables fitted with 2 elbowed M12, 5-pin connectors, one at each end, for chaining the bus between two splitter boxes.

Sensor and actuator =- 24 V power supply connection cables

Cables FTX DP2eee enable connection of --- 24 V power supplies to splitter boxes FTB 1CN and FTB 1DN. Two types of cable are available, in various lengths:
2 FTX DP2200: cables fitted with two 7/8, 5-pin connectors, one at each end, for chaining -- 24 V power supplies between two splitter boxes.
3 FTX DP21ee: cables fitted with a 7/8, 5-pin connector at one end, with the other end free for connection of - -. 24 V power supplies.

Connectors

4 FTX CN12e5: M12, 5-pin, male and female connectors for bus cables.
5 FTX C780e: 7/8, 5-pin, male and female connectors for --- 24 V power supply cables.

Other components

6 FTX CNTL12: bus line terminator fitted with an M12 connector.
7 FTX CoeeB: sealing plugs for 7/8, M12 and M8 connectors.
FTX CY12ee: Y-connector for M12 and M8 connectors.
9 FTX CNCT1: T-connector fitted with two 7/8, 5-pin connectors for power supply cable.

IP 67 monobloc I/O splitter boxes for fieldbuses

Advantys ${ }^{\text {TM }}$ Distributed I/O, FTB splitter boxes
Profibus ${ }^{T M}$-DP bus

Advantys FTB splitter boxes are of the monobloc type.
Each splitter box comprises one part for connection of sensors and actuators by means of M12 connectors, and one part for connection of splitter boxes on Profibus-DP fieldbus.
This splitter box enables inputs/outputs to be located remotely, as close as possible to the equipment being controlled.

Profibus-DP presentation

The Profibus-DP (Process Fieldbus Decentralized Peripheral) is an open type fieldbus system for industrial applications. The Profibus standard is described in standard EN 50170.
The physical link is a simple, type A, shielded twisted pair.
Data exchange between the Master (processing unit) and the Slaves (decentralized devices) is performed in a cyclic manner.
A maximum of 32 Slaves can be connected to a bus segment. To increase the number of Slaves, repeaters must be installed in order to create new bus segments.
The repeaters also provide galvanic isolation of the bus segments.
The total number of slaves must not exceed 126.
The bus must be fitted with a line terminator at each end of each segment created.

Presentation, functions:	Description, configuration:	Characteristics:
pages 14-17	pages 18,21,24,	References:

Advantys ${ }^{\text {TM }}$ Distributed I/O, FTB splitter boxes Profibus ${ }^{\text {TM }}$-DP bus

Step 2: Access to the configuration menu

Step 3: Configuration

Description

Profibus-DP monobloc I/O splitter boxes FTB 1DP have the following on the front face:

1 Eight M12 female connectors for connection of sensors and actuators (2 channels per connector).

2 Eight channel status indicator lights (00 to 07).
3 Eight channel status indicator lights (10 to 17) or channel diagnostic indicator lights (00 to 07) depending on the splitter box configuration.
4. Two 7/8 connectors for connecting the - - 24 V sensor and actuator power supplies: male for PWR IN, female for PWR OUT.

5 One M12 male connector (bus IN) and one M12 female connector (bus OUT) for connection of the Profibus-DP bus.

6 Access to the address coding wheels.
7 One bus diagnostics LED.
8 Two sensor/actuator diagnostic LEDs.
9 Two =-- 24 V sensor and actuator supply status LEDs.
10 Eight channel marker labels.
11 Two splitter box marker labels.
12 Splitter box functional ground connection (beneath the label).

Configuration

The Profibus-DP identification number is a preset, non-modifiable element exclusive to each Slave.
An .gsd file is assigned to each product, which contains all the important information relating to the product. An icon (.dib for Profibus-DP) is also available for installation in the system configurator (please refer to the configuration software documentation for the import of .gsd files).
During configuration of the equipment, the Master receives precise criteria relating to the overall structure of the fieldbus via the system configurator. All necessary information relating to the type and operational behavior of the various Slaves, as well as data concerning the identification number, is included in the .gsd file.

Example with SyCon configurator (refer to our Modicon ${ }^{\circledR}$ Premium ${ }^{T M}$ PLC automation platform catalog):

- Select the products for the application from the product catalog library in the SyCon software (step 1),
- Product configuration (step 2):
\square double-click on the product icon to access the product configuration menu, \square select the required product reference from the suggested list,
\square select the associated functions that you wish to use with the product.
- Channel by channel, configure the type of signal that will be connected to it (step 3):
\square input (N/O or N/C contact),
\square diagnostic input (only applicable to channels 10 to 17),
- output.

Addressing

For the Slaves, the assignment of addresses generally starts at address 3 ($0-2$ reserved for the Master). The addresses are configurable from 1 to 99 by means of 2 coding wheels (x 10 and x 1).

IP 67 monobloc I/O splitter boxes for fieldbuses

Advantys ${ }^{\text {TM }}$ Distributed I/O, FTB splitter boxes Profibus ${ }^{\text {m }}$-DP bus

Cabling system

Cabling accessories

Profibus-DP bus connection cables

Cables FTX DP•2•๑ enable connection of splitter boxes FTB 1DP to Profibus-DP fieldbus.
1 FTX DP12ee: cables fitted with 2 straight M12, 5 -pin connectors, one at each end, for chaining the bus between two splitter boxes.
2 FTX DP32ee: cables fitted with 2 elbowed M12, 5-pin connectors, one at each end, for chaining the bus between two splitter boxes.
3 TSX PBSCA•00: cables with flying leads at both ends.

Sensor and actuator $-\mathbf{2 4} \mathbf{V}$ power supply connection cables

Cables FTX DP2eee enable connection of --- 24 V power supplies to splitter boxes FTB 1DP. Two types of cable are available, in various lengths:
4 FTX DP22ee: cables fitted with two 7/8, 5-pin connectors, one at each end, for chaining =-- 24 V power supplies between two splitter boxes.
5 FTX DP21ee: cables fitted with a 7/8, 5-pin connector at one end, with the other end free for connection of --- 24 V power supplies.

Connectors

6 FTX DP12e5: M12, 5-pin, male and female connectors for bus cables.
7 FTX C78ee: 7/8, 5-pin, male and female connectors for --. 24 V power supply cables.

Other components

8 FTX DPTL12: bus line terminator fitted with an M12 connector.
9 FTX Coe日B: sealing plugs for 7/8, M12 and M8 connectors.
10 FTX CY12ee: Y-connector for M12 and M8 connectors.
11 FTX CNCT1: T-connector fitted with two 7/8, 5-pin connectors for power supply cable.

Presentation, functions:	Description, configuration:	Characteristics:	References:
pages 14-17	pages 18,21,24,	pages 26, 27	pages 28-30

Advantys FTB splitter boxes are of the monobloc type.
Each splitter box comprises one part for connection of sensors and actuators by means of M12 connectors, and one part for connection of splitter boxes on InterBus fieldbus.
This splitter box enables inputs/outputs to be located remotely, as close as possible to the equipment being controlled.

InterBus bus presentation

InterBus is a serial link type fieldbus for sensors and actuators which satisfies the requirements of industrial environments.
Conforming to the standard specification, an InterBus can operate with up to 256 Slaves:
■ $12.8 \mathrm{~km}(41,999 \mathrm{ft}$.) with copper conductors,
■ beyond $80 \mathrm{~km}(262,500 \mathrm{ft}$.) using fiber optic cables.
The distance between 2 different components of the bus must not exceed 400 m (1312 ft .) when using copper conductors.
The InterBus system is designed in the form of a loop and has the structure of a shift register distributed on the bus. Each Slave, with its registers, constitutes a component in this shift register loop.

The cyclic exchange of information between the Master and the Slaves is carried out independently by the Master.
The physical link consists of 3 pairs of twisted wires with common shielding. In addition to the main bus (long distance bus), a local bus can be set up.

- Characteristics of InterBus local bus,
\square the -- 24 V power supply also passes along the system cable (3 additional wires, $0.75 \mathrm{~mm}^{2} / \# 19$ AWG) to supply the electronics and the Slave peripherals,
- the maximum current is limited to 4.5 A , in accordance with the specification,
\square the maximum distance is 50 m (164 ft.).

Presentation, functions:	Description, configuration:	Characteristics:	References:	pimensions:
pages 14-17	pages 18,21,24,	pages 26,27	pages 28-30	pages 31-33

IP 67 monobloc I/O splitter boxes for fieldbuses

Advantys ${ }^{\text {TM }}$ Distributed I/O, FTB splitter boxes InterBus ${ }^{\text {TM }}$ bus extention

Description

InterBus monobloc I/O splitter boxes FTB 1IB have the following on the front face:
1 Eight M12 female connectors for connection of sensors and actuators (2 channels per connector).

2 Eight channel status indicator lights (00 to 07).
3 Eight channel status indicator lights (10 to 17) or channel diagnostic indicator lights (00 to 07) depending on the splitter box configuration.

4 Two terminal blocks for connection of --- 24 V sensor and actuator power supplies (IN and OUT) (connectors included with product).

5 Four terminal blocks for connection of the InterBus bus (connectors included with product).

6 Three bus diagnostic LEDs.
7 Two sensor/actuator diagnostic LEDs.
8 Two =-- 24 V sensor and actuator supply status LEDs.
9 Eight channel marker labels.
10 Two splitter box marker labels.
11 Splitter box functional ground connection (beneath the label).

Configuration

Each Slave has its own identification code, so that it can be clearly identified by the InterBus Master. This code is configured by the manufacturer and cannot be subsequently modified. The characteristics of this code are defined in the InterBus specification.
Start-up of the system is immediately followed by an identification cycle. During this system initialization phase, the identification data of all the Slaves is read by the Master according to their position in the bus. This data will, in particular, be used to prepare the peripheral image at the Master.
The following cycles are simple data cycles, whose only purpose is the exchange of process data between the Master and the Slaves.

Addressing

The InterBus system allows either physical addressing or logic addressing.
Physical addressing
The assignment of the Master's peripheral image to the process image within the PLC corresponds to the layout of the splitter boxes in the fieldbus.

■ Logic addressing
During configuration, it is possible to carry out manual logic addressing using configuration software (for example: CMDtools), independently of the Master used. During this operation, logic addressing of the peripheral image or of parts of this image is carried out to the process image within the PLC.

Presentation, functions:	Characteristics:	References:
pages $14-17$	pages 26,27	pages $28-30$

Advantys ${ }^{\text {TM }}$ Distributed I/O, FTB splitter boxes InterBus ${ }^{\text {TM }}$ bus extension

Cabling system

Cabling accessories

Connection cables for the bus and for sensor and actuator $=\mathbf{2 4} \mathrm{V}$ power supplies
Cables FTX IB1200 enable connection of splitter boxes FTB 1IB to InterBus fieldbus.
1 FTX IB12e0: cables fitted with 2 sets of connectors at each end for chaining the bus and power supplies between two splitter boxes.

Other components

2 FTX CMe®B: sealing plugs for M12 and M8 connectors.
3 FTX CY12ee: Y-connector for M12 and M8 connectors.
4 FTX CPE10: cable gland.

Environmental characteristics

IP 67 monobloc I/O splitter boxes for fieldbuses

Advantys ${ }^{\text {TM }}$ Distributed I/O, FTB splitter boxes

FTX DP2115

Connection accessories				
Description	Composition	Length m (ft.)	Reference	Weight kg
For CANopen/DeviceNet buses				
Bus connection cables	Fitted with 2 elbowed M12, 5-pin connectors, A encoded, one at each end	0.3 (0.98)	FTX CN3203	0.040
		0.6 (1.97)	FTX CN3206	0.070
		1 (3.28)	FTX CN3210	0.100
		2 (6.56)	FTX CN3220	0.160
		3 (9.8)	FTX CN3230	0.220
		5 (16.4)	FTX CN3250	0.430
--- 24 V power supply connection cables	Fitted with two 7/8, 5-pin connectors, one at each end	0.6 (1.97)	FTX DP2206	0.150
		1 (3.28)	FTX DP2210	0.190
		2 (6.56)	FTX DP2220	0.310
		5 (16.4)	FTX DP2250	0.750
	Fitted with one 7/8, 5-pin connector, other end has flying leads	1.5 (4.92)	FTX DP2115	0.240
		3 (9.8)	FTX DP2130	0.430
		5 (16.4)	FTX DP2150	0.700
Connectors	M12 male, 5-pin, A encoded	-	FTX CN12M5	0.050
	M12 female, 5-pin, A encoded	-	FTX CN12F5	0.050
Line terminator (for end of bus)	Fitted with one M12 connector	-	FTX CNTL12	0.010
T-connector for power supply	Fitted with two 7/8, 5-pin connectors	-	FTX CNCT1	0.100
For Profibus-DP bus				
Bus connection cables	Fitted with 2 straight M12, 5-pin connectors, one at each end	0.3 (0.98)	FTX DP1203	0.040
		0.6 (1.97)	FTX DP1206	0.070
		1 (3.28)	FTX DP1210	0.100
		2 (6.56)	FTX DP1220	0.160
		3 (9.8)	FTX DP1230	0.220
		5 (16.4)	FTX DP1250	0.430
	Fitted with 2 elbowed M12, 5-pin connectors, one at each end	0.3 (0.98)	FTX DP3203	0.040
		0.6 (1.97)	FTX DP3206	0.070
		1(3.28)	FTX DP3210	0.100
		2 (6.56)	FTX DP3220	0.160
		3 (9.8)	FTX DP3230	0.220
		5 (16.4)	FTX DP3250	0.430
--- 24 V power supply connection cables	Fitted with two 7/8, 5-pin connectors, one at each end	0.6 (1.97)	FTX DP2206	0.150
		1(3.28)	FTX DP2210	0.190
		2 (6.56)	FTX DP2220	0.310
		5 (16.4)	FTX DP2250	0.750
	Fitted with one 7/8, 5-pin connector, other end has flying leads	1.5 (4.92)	FTX DP2115	0.240
		3 (9.8)	FTX DP2130	0.430
		5 (16.4)	FTX DP2150	0.700
Connectors	M12 male, 5-pin, B encoded	-	FTX DP12M5	0.050
	M12 female, 5-pin, B encoded	-	FTX DP12F5	0.050
Line terminator (for end of bus)	Fitted with one M12 connector	-	FTX DPTL12	0.010
T-connector for power supply	Fitted with two 7/8, 5-pin connectors	-	FTX CNCT1	0.100
Cables	Flying leads at both ends	100 (328.1)	TSX PBSCA100	-
		400 (1213)	TSX PBSCA400	-
For InterBus bus				
Cables with connectors for bus and power supply	Fitted with 2 sets of connectors	0.6 (1.97)	FTX IB1206	0.250
		1 (3.28)	FTX IB1210	0.400
		2 (6.56)	FTX IB1220	0.650
		5 (16.4)	FTX IB1250	-
Cable gland	M16 x 1.5 (set of 2)	-	FTX CPE10	0.020

Presentation, functions:	Description, configuration:	Characteristics:
pages 14-17	pages 18,21,24,	pages 26, 27

	Separate components			
	Description	Composition	Reference	Weight kg
	For all bus types			
	Connectors	7/8 male, 5-pin	FTX C78M5	0.050
		7/8 female, 5-pin	FTX C78F5	0.050
	Sealing plugs	For M8 connector (lot of 10)	FTX CM08B	0.100
		For M12 connector (lot of 10)	FTX CM12B	0.100
		For 7/8 connector	FTX C78B	0.020
	Y-connectors	Connection of $2 \times \mathrm{M} 8$ connectors to M12 connector on splitter box	FTX CY1208	0.020
		Connection of $2 \times \mathrm{M} 12$ connectors to M12 connector on splitter box	FTX CY1212	0.030
	Diagnostics adaptor	Fitted with two M12 connectors	FTX DG12	0.020
	Marker labels	For plastic splitter boxes (lot of 10)	FTX BLA10	0.010
FTX CY1208		For metal splitter boxes (lot of 10)	FTX MLA10	0.010

FTB 1CNeeeP0, FTB 1DNeeoP0, FTB 1DPeeoP0
FTB 1IBeeoP1

$\begin{array}{ll}\text { Presentation, functions: } & \text { Description, configuration: } \\ \text { pages } 14-17 & \text { Characteristics: } \\ \text { pages } 18,21,24\end{array}$

Sensor/actuator connection

M12 female connector

CANopen and DeviceNet buses

Y-connector connection

 FTX CY1208

FTX CY1212

Supply to splitter box Supply input

7/8 female connector

Bus input/Bus output Bus input

Bus output

$\overline{\bar{M}} 12$ male connecto

M12 female connector
(1) Supply to splitter box and sensors
(2) Supply to actuators.

Profibus-DP bus
Supply to splitter box Supply input

Supply output

7/8 male connector

7/8 female connector
(1) Supply to splitter box and sensors.
(2) Supply to actuators.

Bus input/Bus output Bus input

M12 male connector

M12 female connector

Note: connectors linked to shielding.

Supply to splitter box
1 Supply input

Bus input/Bus output
3 Local bus, bus input
3 Main bus, bus input

4 Local bus, bus output

IP 67 modulor I/O splitter boxes for fieldbuses
Advantys ${ }^{\text {TM }}$ Distributed I/O, FTM splitter boxes

Bus modules FTM Industrial fieldbus type

Degree of protection
Bus connector type
Maximum number of digital I/O per bus module
Maximum number of splitter boxes per bus module

Maximum number of splitter boxes per segment

Analog inputs/outputs

Degree of protection	
Bus connection	
Splitter box type	Voltage
Connector type	Conformity to IEC 11331-2
Modularity Number of channels Digital inputs	Voltage
Tigital outputs	Current/output
Maximum supply by internal	
bus	
Nature	
Measuring range	
	Resolution
Conversion time	

Splitter box type

Pages

IP 67 modular I/O splitter boxes for fieldbuses

Advantys ${ }^{\text {TM }}$ Distributed I/O, FTM splitter boxes

Presentation

To meet the needs of machine manufacturers and users, automation system architectures are becoming decentralized, while offering performances comparable to those obtained with a centralized structure.
Advantys FTM IP 67 modular I/O splitter boxes enable sensors and actuators to be connected in distributed automation systems using pre-assembled cables, thus reducing wiring time and costs, whilst at the same time increasing the operational availability of the installation.

These IP 67 protected splitter boxes can also be used within processes or machines in harsh environments (splashing water, oil, dust, etc.).

Advantys FTM splitter boxes allow distributed connection of sensors and actuators on machines via a fieldbus. They communicate on different buses such as: CANopen, DeviceNet and Profibus-DP.
Sensors and actuators are connected by means of standard M12 and M8 connectors.
This modularity makes installation of the splitter boxes within the machine even easier.
The configurable I/O splitter boxes also enable the mixing of inputs and outputs and, as a result, reduce the number of product variants. This provides savings in space as well as increasing the flexibility of the installation.

Principle

The Advantys FTM modular offer enables, from a single communication interface (fieldbus module), the connection of a changeable number of I/O splitter boxes. These splitter boxes are connected to the bus module by a hybrid cable comprising both the internal bus and the power supply (internal, sensors and actuators). The I/O splitter boxes are not governed by the type of fieldbus, thus reducing the number of splitter box references. Addressing of Advantys FTM splitter boxes is automatic. On completion of mounting, the system is ready to operate.

Description:	Connections:	Characteristics:
page 43	pages 44,45	pages 46,47

IP 67 modular I/O splitter boxes for fieldbuses

Advantys ${ }^{\text {TM }}$ Distributed I/O, FTM splitter boxes

(1) Maximum distance of 5 m (16.4 ft.) between the bus module and the last splitter box on the same segment.

Presentation (continued)

The topology of the system is a star/line architecture.
Each bus module is fitted with four M12 connectors for the connection of Advantys FTM splitter boxes (star architecture). On each "run", called a segment, it is possible to connect up to 4 splitter boxes on the chaining principle (line architecture). The maximum length of a segment, between the bus module and the last splitter box, must not exceed 5 m (16.4 ft.).

For one bus module, the maximum number of splitter boxes is:
■ 4 per segment, i.e. 64 I/O.
■ 16 for the group of 4 possible segments of the bus module, i.e. 256 digital I/O.

Several Advantys FTM splitter box variants are available:

Compact splitter boxes

These splitter boxes do not allow continuity of the internal bus to other splitter boxes on the same bus module segment. They are used in the following cases:

- a single splitter box on a segment (no chaining),
- the last splitter box on a segment

Expandable splitter boxes

These splitter boxes allow continuity of the internal bus to other splitter boxes (chaining). If an expandable splitter box is used as the last splitter box of an internal bus segment, it is then necessary to install a line terminator on the output bus connector

Digital I/O splitter boxes

These splitter boxes are available in compact and expandable versions, only for the connection of sensors (input splitter boxes) or for the connection of sensors and/or actuators (input/output splitter boxes):

- -- 24 V inputs, IEC type 2.
- -. 24 V 0.5 A transistor outputs.
- The different input splitter box variants are as follows: $\square 8 \times$ M8 connectors for connection of up to 8 sensors, $\square 4 \times$ M12 connectors for connection of up to 8 sensors (4 for sensors with integrated DESINA ■ diagnostics function),
$\square 8 \times$ M12 connectors for connection of up to 16 sensors (8 for sensors with integrated DESINA diagnostics function).
- The different input/output splitter box variants are as follows:

Each channel can be configured as an input, an output or as a diagnostic input. $\square 8 \times$ M8 connectors for connection of up to 8 sensors or actuators
$\square 4 \times$ M12 connectors for connection of up to 8 sensors or actuators (4 for sensors with integrated DESINA diagnostics function),
$\square 8 \times$ M12 connectors for connection of up to 16 sensors or actuators (8 for sensors or actuators with integrated DESINA diagnostics function).

Analog I/O splitter boxes

These splitter boxes are only available in the compact version for the connection of analog sensors or actuators using M12 connectors:
■ 4 analog input splitter boxes (voltage or current).
■ 4 analog output splitter boxes (voltage or current)

Description:	Connections:	Characteristics:	References:
page 43	pages 44, 45	pages 46, 47	pages 48, 49

IP 67 modular I/O splitter boxes for fieldbuses

Advantys ${ }^{\text {TM }}$ Distributed I/O, FTM splitter boxes

Functions
 Selection of signal type per channel

- Each M12, 5-pin connector on Advantys FTM splitter boxes allows the connection of 2 signals. Depending on the type of splitter box, these can be:
- 1 sensor input signal,
- 1 diagnostic input signal,

ם 1 actuator output signal.
Signal type, depending on digital splitter box selected:

		FTM 1DD	FTM 1DE
M12 and M8	Contact 4	Input Output	Input
M12	Contact 2	Input Output Diagnostic	Input Diagnostic

Note: either a normally open (N/O) or a normally closed (N/C) contact can be chosen for each input signal.

Diagnostics

Each Advantys FTM splitter box has one LED per channel to indicate the status of the channel and to enable fast and precise location of a fault. Fault monitoring diagnostics are indicated on the splitter box by LEDs and are fed back to the control system (PLC) via the bus.

There are 2 levels of diagnostics:

- diagnostics per channel,
- diagnostics per splitter box.

Diagnostics per channel

- Sensor short-circuit

A short-circuit or overload on contact 1 of the M12 or M8 female connector blows the self-resetting fuse. Each M12 or M8 connector is individually protected. A red LED indicates the fault on the corresponding M12 or M8 connector. This fault is signalled to the Master. Supply to the sensors is automatically restored after elimination of the fault.

■ Actuator short-circuit

A short-circuit or overload of an output causes a reset of this output. The fault is signalled to the Master. A red LED indicates the fault on the corresponding M12 or M8 connector. The output does not restart automatically. After having eliminated the cause of the fault, the channel must be reset by the PLC. This operation erases the short-circuit memory.

■ Actuator warning

When the output is at state 0 , the contact corresponding to the M12 or M8 female connector is checked for presence of 24 V voltage. If +24 V is present, it means there is a "short-circuit". A red LED indicates the fault on the corresponding M12 or M8 connector. The fault is signalled to the Master.

Description:	Connections:	Characteristics:
page 43	pages 44, 45	pages 46, 47

Example of connection of a sensor with integrated diagnostics function

Example of connection of a standard sensor with the diagnostics adaptor

Functions (continued)
Diagnostics per splitter box
■ Sensor/actuator supply status.
■ "Undervoltage" fault on the I/O supply.
■ Sensor short-circuit.

■ Actuator short-circuit.

Use of contact 2 diagnostics function (M12 connector)

Advantys FTM splitter boxes allow the use of sensors and actuators incorporating an integrated diagnostics function (DESINA type). Configuring contact 2 of each M12 connector as a diagnostic input enables detection of external faults associated with the sensors or actuators.
This information enables the following faults to be detected:

- damage to the detection surface,
- faulty electronics,
- no load.

Selection of either the sensor input or diagnostic input function on contact 2 is made channel by channel, by entering parameters, when configuring the splitter box. Fault indication by a red LED is possible for each channel configured as a diagnostic input.

Example of connection of a sensor with integrated diagnostics function:
Using the M12 diagnostics adaptor accessory FTX DG12, it is possible to monitor breaks in wiring to sensors or actuators which do not have an integrated diagnostics function (only applicable to splitter boxes fitted with M12 connectors).

Description:	Connections:	Characteristics:	References:
page 43	pages 44,45	pages 46,47	pages 48, 49

CANopen bus presentation

The CAN system, initially developed for real-time exchange of information in the automobile industry, is now being used more and more throughout industry. There are several fieldbuses based on CAN base layers and components.
The CANopen bus conforms to international standard ISO 11898, promoted by the "CAN in Automation" association (a grouping of manufacturers and users), and guarantees a high degree of openness and inter-operability due to its communication profiles and its standardized equipment.
The CANopen bus is now recognized, in Europe, as the reference standard for building industrial systems based on the CAN concept.
The CANopen bus is a Multimaster bus, based on the Master/Slave principle. The physical link consists of a shielded twisted pair, to which up to a maximum of 127 Slaves can be connected by simple tap-off. The binary rate varies, depending on the length of the bus, from $1 \mathrm{Mbits} / \mathrm{s}$ for 40 m (131.2 ft.) to $50 \mathrm{kbits} / \mathrm{s}$ for 1000 m 3281 ft .).
Each end of the bus must be fitted with a line terminator.
The CANopen bus is a set of profiles on CAN systems, possessing the following characteristics:

- Open bus system.
- Data exchanges in real-time without overloading the protocol.
- Modular design allowing modification of size.
- Interconnection and interchangeability of devices.
- Standardized configuration of networks.
- Access to all device parameters.
- Synchronization and circulation of data from cyclic and/or event-controlled processes (short system response time).
■ Exchanges possible with numerous international manufacturers.

CANopen bus configuration

An .eds file is assigned to each product, which contains all the important information relating to the product. An icon (.dib) is also available for installation in the system configurator.
Please refer to the configuration software documentation for the import of .eds files. Following the CANopen system initialization phase, all the Slaves signal their presence on the bus by means of a "Boot-Up" message. A setting-up configurator (e.g.: SyCon. Refer to our Modicon ${ }^{\circledR}$ Premium ${ }^{\text {TM }}$ PLC automation platform catalog) can then start to read and register the CANopen bus and, on the basis of the data obtained, assign a corresponding .eds file to each Slave. Based on the .eds file data, the Master creates a peripheral image of all the Slaves detected by the PLC. The user can assign I/O bytes to logic addresses within the PLC.

- Addressing

The addresses are configurable from 1 to 99 by means of 2 coding wheels ($x 10$ and $x 1$). A 3rd coding wheel enables the data transmission speed to be selected (position $0=$ automatic speed recognition).

Description:	Connections:	Characteristics:
page 43	pages 44, 45	pages 46, 47

DeviceNet bus presentation

The DeviceNet system is a sensor/actuator bus system of the open Low-End type, used in various industrial applications and, in particular, the automobile industry. It is based on CAN technology (OSI layers 1 and 2).
The DeviceNet bus is based on the Master/Slave principle.
The physical link consists of 2 shielded twisted pairs (2 wires for data, 2 wires for auxiliary supply to sensors), to which up to a maximum of 63 slaves can be connected. The binary rate varies, depending on the length of the bus, from $125 \mathrm{kbits} / \mathrm{s}$ for 500 m (1640 ft .) to $500 \mathrm{kbits} / \mathrm{s}$ for $100 \mathrm{~m}(328.1 \mathrm{ft}$).
Each end of the bus must be fitted with a line terminator.

DeviceNet bus configuration

An .eds file is assigned to each product, which contains all the important information relating to the product. An icon (.ico) is also available for installation in the system configurator.
When the network is scanned, the identification data is compared with that of the Slaves present on the network and assigned accordingly. After the scanning phase, the scanner will have identified all the Slaves and saved information relating to data length and operating mode.
The DeviceNet bus Master establishes a peripheral image of all the devices detected on the DeviceNet bus and incorporates them according to their physical location in a Scan list. The user can then assign the Scan list, according to the peripheral image of the bus devices, to logic addresses in the PLC.

- Addressing

The addresses are configurable from 1 to 63 by means of 2 coding wheels ($x 10$ and x 1). A 3rd coding wheel enables the data transmission speed to be selected (3 speeds can be selected: 125, 250 and $500 \mathrm{kbits} / \mathrm{s}$).

Description:	Connections:	Characteristics:	References:
page 43	pages 44,45	pages 46,47	pages 48,49

Profibus-DP presentation

The Profibus-DP (Process Fieldbus Decentralized Peripheral) is an open type fieldbus system for industrial applications. The Profibus standard is described in standard EN 50170.
The physical link is a simple, type A, shielded twisted pair.
Data exchange between the Master (processing unit) and the Slaves (decentralized devices) is performed in a cyclic manner.
A maximum of 32 Slaves can be connected to a bus segment. To increase the maximum number of Slaves possible, repeaters must be installed in order to create new bus segments.
The repeaters also provide galvanic isolation of the bus segments.
The total number of slaves must not exceed 126.
The bus must be fitted with a line terminator at each end of each segment created.

Description:	Connections:	Characteristics:	References:
page 43	pages 44, 45	pages 46, 47	pages 48, 49

1011
Bus module FTM with cover

Bus module FTM without cover

FTM 1D•16C12E

FTM 1D•08C08E FTM 1De08C12E

Description

Modular bus modules FTM have the following on the front face:
1 One M12 male connector (bus IN) for connection of the bus.
2 One M12 female connector (bus OUT) for connection of the bus.
3 One 7/8 male connector for connection of the --- 24 V power supplies.
4 Four M12 female connectors for connection of the splitter box inputs/outputs via the internal bus.
5 Four channel marker labels.
6 Two bus module marker labels.
7 Speed selection (CANopen and DeviceNet buses) and bus address switches.
8 One bus power supply status LED.
9 One bus diagnostics LED.
10 One sensor power supply diagnostics LED.
11 One sensor power supply diagnostics and communication status LED.
12 Bus module functional ground connection.

Expandable splitter boxes FTM 1D•08CeoE and FTM 1 D•16C12E have the following on the front face:
1 One M12 male connector for connection to the bus module or the previous module.
2 One M12 female connector for chaining the internal bus to the next module.
3 Four or eight M12 female connectors (depending on model) for connection of sensors and actuators.
4 Eight M8 female connectors for connection of sensors and actuators.
5 One or two splitter box marker labels (depending on model).
6 Four or eight channel marker labels.
7 One actuator power supply diagnostics LED.
8 One sensor power supply diagnostics LED.
9 Four or eight channel status indicator lights (00 to 07).
10 Four or eight channel status indicator lights (10 to 17) or channel diagnostic indicator lights (00 to 07) depending on the splitter box configuration.
11 Eight channel "power on" indicator lights (00 to 07).

Presentation, functions:	Connections:	Characteristics:	References:
pages $36-41$	pages 44,45	pages 46,47	pages 48,49

Note: the I/O splitter boxes are not governed by the type of fieldbus.

Presentation, functions:	Description:	Characteristics:	References:
pages $36-41$	page 43	pages 46,47	pages 48,49

Cabling accessories for bus modules

Bus module to bus connection cables
Various cables enable connection of the bus module to the fieldbus.
They are available in different lengths:

CANopen and DeviceNet buses:

1 FTX CN32ee: cables fitted with 2 elbowed M12, 5-pin connectors, one at each end, for connecting the bus between two bus modules.

Bus Profibus-DP

2 FTX DP32ee: cables fitted with 2 elbowed M12, 5-pin connectors, one at each end, for connecting the bus between two bus modules.
3 FTX DP12ee: cables fitted with 2 straight M12, 5-pin connectors, one at each end, for connecting the bus between two bus modules.

Bus module $=-24 \mathrm{~V}$ power supply connection cables

Cables FTX DP2eee enable connection of the main --- 24 V power supply to bus modules FTM 1.
Two types of cable are available, in various lengths:
4 FTX DP22ee: cables fitted with two 7/8, 5-pin connectors, one at each end, for chaining =- 24 V power supplies between two bus modules.
5 FTX DP21ee: cables fitted with a 7/8, 5-pin connector at one end, with the other end free for connection of $=-24 \mathrm{~V}$ power supplies.

Connectors

6 FTX CN12e5: M12, 5-pin, male and female connectors for CANopen and DeviceNet bus cables (A encoded).
7 FTX DP12e5: M12, 5-pin, male and female connectors for Profibus-DP bus cables (B encoded).
8 FTX C78e5: 7/8, 5-pin, male and female connectors for =- 24 V power supply cables.

Other components

9 FTX CNCT1: T-connector fitted with two 7/8, 5-pin connectors, for power supply cable.
10 FTX eoTL12: CANopen, DeviceNet and Profibus-DP bus line terminators, fitted with an M12 connector.

Internal cabling accessories

Internal bus connection cables

Cables FTX CB32ee enable connection of the internal bus between the bus module and the splitter boxes.
This cable is available in different lengths:
11 FTX CB32ee: cables fitted with 2 elbowed M12, 6-pin connectors, one at each end, for connection of internal bus between the bus module and the splitter box or for chaining between two splitter boxes.

Auxiliary =- 24 V power supply connection cables

Cables FTX CA3ee๗ enable connection of an auxiliary =-- 24 V power supply between the bus module and the splitter boxes or directly from a =- 24 V power supply.
Two types of cable are available, in various lengths:
12 FTX CA32ee: cables fitted with 2 elbowed M12, 6-pin connectors, one at each end, for connection of $=-24 \mathrm{~V}$ power supplies between the bus module and the splitter box.
13FTX CA31ee: cables fitted with 1 elbowed M12, 6-pin connector at one end, with the other end free for connection of $-=24 \mathrm{~V}$ power supply.

Other components

14FTX CY12ee: Y-connector for M12 and M8 connectors.
15 FTX CMeeB: sealing plugs for M12 and M8 connectors (bus modules and splitter boxes).
16 FTX CBTL12: internal bus line terminator fitted with an M12 connector.

Presentation, functions:	Description:	Characteristics:	References:
pages $36-41$	page 43	pages 46,47	pages 48, 49

IP 67 modular I/O splitter boxes for fieldbuses

Advantys ${ }^{\text {TM }}$ Distributed I/O, FTM splitter boxes

Environmental characteristics					
Product certifications			cULus		
Temperature	Operation	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	0 to + $55(+32 \ldots+131)$		
	Storage	${ }^{\circ} \mathrm{C}$ (${ }^{\circ} \mathrm{F}$)	-25 to + $70(-13 \ldots+158)$		
Degree of protection			IP 67		
Altitude		m (ft.)	0 to 2000 (0...6562)		
Vibration resistance	Conforming to IEC 68 part 2-6		15 gn		
Shock resistance	Conforming to IEC 68-2-27, test Ea		50 gn , for 11 ms		
Resistance to electrostatic discharge	Conforming to IEC 61000-4-2	kV	$\begin{aligned} & \text { Contact: } \pm 4 \\ & \text { Air: } \pm 8 \end{aligned}$		
Resistance to radiated fields	Conforming to IEC 61000-4-3	V/m	10		
Immunity to fast transient currents	Conforming to IEC 61000-4-4	kV	Power supply: ± 2 Signal: ± 2 Signal: ± 2		
Surge withstand	Conforming to IEC 61000-4-5	V	Power supply: (symmetrical and asymmetrical) ± 500 Signals: (symmetrical and asymmetrical) ± 1000 Ground/PE: ± 500		
Immunity to conducted disturbance	Conforming to IEC 61000-4-6	V/m	10		
Resistance to magnetic fields, 50 Hz	Conforming to IEC 61000-4-8	A/m	30		
Mounting			All positions		
Mechanical mounting			Mounting by two M4 screws (tightening torque 1.5 Nm / 13.3 lbf-in)		
Bus module characteristics					
Bus module type			FTM 1CN10	FTM 1DN10	FTM 1DP10
Bus type			CANopen	DeviceNet	Profibus-DP
Operating voltage		--- V	24		
Maximum supply current		A	9		
Binary rate			125, 250 and $500 \mathrm{kbits} / \mathrm{s}$		$12 \mathrm{Mbits} / \mathrm{s}$
Internal consumption of bus module		mA	70		80
Fieldbus characteristics					
Bus type			CANopen	DeviceNet	Profibus-DP
Structure	Type		$\begin{aligned} & \text { EN } 50325 \\ & \text { ISO } 11898 \end{aligned}$	EN 50325 ISO 11898 CAN, layer 7 DeviceNet	DIN 19245
	Access method		Multimaster, priority information	Master-Slave	Master-Slave, Multi-Master
Transmission	Binary rate		1 Mbits/s	$500 \mathrm{kbits} / \mathrm{s}$	$12 \mathrm{Mbits} / \mathrm{s}$
	Medium		2 twisted, shielded wires	4 twisted, shielded wires	2 twisted, type A, shielded wires (RS 485)
Configuration	Maximum number of devices		127	63	32 without repeater 126 with repeaters
	Maximum length of bus		At 1 Mbits/s: - Max. tap-off length: 0.3 m (0.98 ft.) - Max. cumulative tap-off length: 1.5 m (4.9 ft .) At 500 kbits/s: - Max. tap-off length: 6 m (19.7 ft .) - Max. cumulative tap-off length: 30 m (98.42 ft .)	```Main line: - 500 m (1640 ft.) without repeater, - 3 km (9843 ft.) with repeater Tap-off: 6 m (19.7 ft.) max.```	Without repeater: At 12 Mbits/s: - 100 m (328.1 ft.) max. At 1.5 Mbits/s: - 200 m (656.2 ft.) max. At 500 kbits/s: - 400 m (1312 ft.) max. At < 93.75 kbits/s: - 1.2 km (3937 ft.) max.

Presentation, functions:	Description:	Connections:
pages 36-41	page 43	Rages 44,45

IP 67 modular I/O splitter boxes

 for fieldbusesAdvantys ${ }^{\text {TM }}$ Distributed I/O, FTM splitter boxes

Digital input/output splitter box characteristics

Splitter box type	Compact		Inputs		Inputs/outputs	
			FTM 1DE08Cee	FTM 1DE16C12	FTM 1DD08Cee	FTM 1DD16C12
	Expandable		FTM 1DE08CeoE	FTM 1DE16C12E	FTM 1DD08CeoE	FTM 1DD16C12E
Number of inputs/outputs			81	161	8 I/O	$16 \mathrm{I} / \mathrm{O}$
Internal consumption of splitter box		mA	$\begin{aligned} & \hline 30 \text { (M8) } \\ & 50 \text { (M12) } \\ & \hline \end{aligned}$	50	$\begin{aligned} & \hline 30 \text { (M8) } \\ & 50 \text { (M12) } \end{aligned}$	50
Operating voltage		--- V	24			
Splitter box max. supply current		A	4			
Auxiliary supply max. current		A	-			$\begin{aligned} & \hline 4 \text { (only } \\ & \text { FTM 1DD16C12) } \end{aligned}$
Bus and I/O undervoltage detection		V	< 18			
Input characteristics						
Number of inputs			81	161	0... 81	0... 16 I
Conformity to IEC 1131-2			Type 2			
Compatibility with 2-wire/3-wire proximity sensors			Yes			
Input values	Nominal voltage	--- V	24			
	Maximum current	mA	200			
	Sensor power supply	V	18... 30			
Logic			Positive			
Input filtering		ms	1			
Channel status indication			By LED (yellow), one LED per input			
Protection against reversed polarity			Yes			
Output characteristics						
Number of outputs			-		0... 80 0... 160	
Output type			-		Transistor	
Nominal output values	Voltage	--- V	-		24	
	Current	A	-		0.5	
Response time		ms	-		< 0.5	
Max. switching cycle		Hz	-		Resistive: 50 Inductive: 5	
Max. lamp load		W	-		10	
Channel status indication			-		By LED (yellow), one LED per output	
Output connection/cable lengths			-		$0.34 \mathrm{~mm}^{2} / 5 \mathrm{~m}$ (\#22 AWG / 16.4 ft .) max $0.75 \mathrm{~mm}^{2} / 10 \mathrm{~m}$ (\#19 AWG / 32.8 ft .) max	
Analog input/output splitter box characteristics						
Splitter box type	Compact		Inputs		Outputs	
			FTM 1AE04C12C	FTM 1AE04C12T	FTM 1AS04C12C	FTM 1AS04C12T
Number of inputs/outputs			41	41	40	40
Internal consumption of splitter box		mA	50			
Operating voltage		--- V	24			
Maximum supply current	Splitter box	A	4			
	Per channel	A	≤ 0.2		≤ 1.6	
Bus and I/O undervoltage detection		V	<18			
Input and output characteristics						
Type			Differential 300Ω Differential $1 \mathrm{M} \Omega$		$\leq 500 \Omega$	$\geq 500 \Omega$
Current	Measuring range		$\begin{aligned} & 0 \text { to } 20 \mathrm{~mA}, 4 \text { to } \\ & 20 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & =-= \pm 10 \mathrm{~V},=-\mathrm{o} \text { to } \\ & 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \text { to } 20 \mathrm{~mA}, 4 \text { to } \\ & 20 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & =-= \pm 10 \mathrm{~V},=-\mathrm{o} \text { to } \\ & 10 \mathrm{~V} \end{aligned}$
	Resolution	Bits	16	15 + Sign	12	11 + Sign
	Conversion time	ms	$\leq 2 /$ channel		<1/channel	
Input filtering		ms	1		-	
Channel status indication						
Output connection/cable lengths		m (ft.)	30 (98.4) max.			

Digital and analog splitter boxes diagnostic characteristics

Internal bus and I/O undervoltage detection	V	<18
Internal bus communication		By LED
Channel and splitter box short-circuit		By LED
Cable breakage		By LED

IP 67 modular I/O splitter boxes for fieldbuses

Advantys ${ }^{\text {TM }}$ Distributed I/O, FTM splitter boxes

FTM 1D•08C08

FTM 1D•08C12 FTM 1A•04C12•

FTM 1DD16C12

FTM 1D•08C08E

FTM 1D•08C12E Modular analog I/O splitter boxes for all bus types

4	$\begin{aligned} & 4, \\ & 0 \ldots 20 \mathrm{~mA} \\ & 4 \ldots . .20 \mathrm{~mA} \end{aligned}$	-	$4 \times$ M12 female Compact connectors	FTM 1AE04C12C	0.130
	$\begin{aligned} & 4, \\ & = - \pm 10 \mathrm{~V} \\ & =-0 \ldots 10 \mathrm{~V} \end{aligned}$	-	$4 \times$ M12 female Compact connectors	FTM 1AE04C12T	0.130
	-	$\begin{aligned} & 4, \\ & 0 \ldots 20 \mathrm{~mA} \\ & 4 \ldots 2 \mathrm{~mA} \end{aligned}$	$4 \times$ M12 female Compact connectors	FTM 1AS04C12C	0.130
		$\begin{aligned} & \overline{4,} \\ & = - \pm 10 \mathrm{~V} \\ & =-0 \ldots . .10 \mathrm{~V} \end{aligned}$	$4 \times$ M12 female Compact connectors	FTM 1AS04C12T	0.130

Connection accessories

Description	Composition	Length m (ft.)	Reference	Weight kg
For CANopen/DeviceNet buses				
Bus connection cables	Fitted with 2 elbowed M12, 5-pin connectors, A encoded, one at each end	0.3 (0.98)	FTX CN3203	0.040
		0.6 (1.97)	FTX CN3206	0.070
		1 (3.28)	FTX CN3210	0.100
		2 (6.56)	FTX CN3220	0.160
		3 (9.8)	FTX CN3230	0.220
		5 (16.4)	FTX CN3250	0.430
Connectors M12	5-pin, male, A encoded	-	FTX CN12M5	0.050
	5-pin, female, A encoded	-	FTX CN12F5	0.050
Line terminator (for end of bus)	Fitted with one M12 connector	-	FTX CNTL12	0.010
For Profibus-DP bus				
Bus connection cables	Fitted with 2 straight M12, 5 -pin connectors, one at each end	0.3 (0.98)	FTX DP1203	0.040
		0.6 (1.97)	FTX DP1206	0.070
		1 (3.28)	FTX DP1210	0.100
		2 (6.56)	FTX DP1220	0.160
		3 (9.8)	FTX DP1230	0.220
		5 (16.4)	FTX DP1250	0.430
	Fitted with 2 elbowed M12, 5 -pin connectors, one at each end	0.3 (0.98)	FTX DP3203	0.040
		0.6 (1.97)	FTX DP3206	0.070
		1 (3.28)	FTX DP3210	0.100
		2 (6.56)	FTX DP3220	0.160
		3 (9.8)	FTX DP3230	0.220
		5 (16.4)	FTX DP3250	0.430

Presentation, functions:	Description:	Connections:
pages 36-41	page 43	pages 44,45

Description	Composition	Length m (ft.)	Reference	Weight kg
For Profibus-DP bus (continued)				
Connectors	M12 male, 5-pin, B encoded	-	FTX DP12M5	0.050
	M12 female, 5-pin, B encoded	-	FTX DP12F5	0.050
Line terminator (for end of bus)	Fitted with one M12 connector	-	FTX DPTL12	0.010
For all bus types				
=- 24 V bus module power supply connection cables	Fitted with two 7/8, 5-pin connectors, one at each end	0.6 (1.97)	FTX DP2206	0.150
		1 (3.28)	FTX DP2210	0.190
		2 (6.56)	FTX DP2220	0.310
		5 (16.4)	FTX DP2250	0.750
	Fitted with one 7/8, 5-pin connector, other end free	1.5 (4.92)	FTX DP2115	0.240
		3 (9.8)	FTX DP2130	0.430
		5 (16.4)	FTX DP2150	0.700
T-connector for power supply cable	Fitted with two 7/8, 5-pin connectors	-	FTX CNCT1	0.100
For internal bus				
Internal bus connection cables for bus module splitter box linking	Fitted with 2 elbowed M12, 6-pin connectors, one at each end	0.3 (0.98)	FTX CB3203	0.060
		0.6 (1.97)	FTX CB3206	0.090
		1 (3.28)	FTX CB3210	0.120
		2 (6.56)	FTX CB3220	0.215
		3 (9.8)	FTX CB3230	0.310
		5 (16.4)	FTX CB3250	0.500
Auxiliary --. 24 V power supply connection cables for bus module splitter box linking	Fitted with 2 elbowed M12, 6-pin connectors, one at each end	0.3 (0.98)	FTX CA3203	0.035
		0.6 (1.97)	FTX CA3206	0.045
		1 (3.28)	FTX CA3210	0.060
		2 (6.56)	FTX CA3220	0.090
		3 (9.8)	FTX CA3230	0.120
		5 (16.4)	FTX CA3250	0.180
Auxiliary =-- 24 V power supply connection cables	Fitted with 1 elbowed M12, 6-pin connector, other end free	0.3 (0.98)	FTX CA3103	0.030
		0.6 (1.97)	FTX CA3106	0.035
		1 (3.28)	FTX CA3110	0.040
		2 (6.56)	FTX CA3120	0.070
		3 (9.8)	FTX CA3130	0.100
		5 (16.4)	FTX CA3150	0.160
Line terminator for end of internal bus	Fitted with one M12 connector	-	FTX CBTL12	0.030

Separate components			
Description	Composition	Reference	Weight kg
Connectors	7/8 male, 5-pin	FTX C78M5	0.050
	7/8 female, 5-pin	FTX C78F5	0.050
Sealing plugs	For M8 connector (lot of 10)	FTX CM08B	0.100
	For M12 connector (lot of 10)	FTX CM12B	0.100
Y-connectors	Connection of $2 \times \mathrm{M} 8$ connectors to M12 connector on splitter box	FTX CY1208	0.020
	Connection of $2 \times \mathrm{M} 12$ connectors to M12 connector on splitter box	FTX CY1212	0.030
Diagnostics adaptor	Fitted with two M12 connectors	FTX DG12	0.020
Marker labels	Lot of 10	FTX MLA10	0.010
CD-ROM	Configuration files, technical manuals and operating instructions	FTX ES00	0.050

Presentation, functions:	Description: page $36-42$	Connections: page 43	Characteristics:

IP 67 modular I/O splitter boxes for fieldbuses
 Advantys ${ }^{\text {TM }}$ Distributed I/O, FTM splitter boxes

Bus modules

Presentation, functions:	Description:	Connections:	Characteristics:
pages $36-42$	page 43	pages 44,45	pages 46,47

Splitter box connection
Input/output connection for digital splitter boxes
Input/output connection for analog splitter boxes
Analog input
Analog output

Bus input/Internal bus output of splitter boxes Internal bus input

Internal bus output

Internal bus
M12 male connector
(1) Supply to splitter box and sensors.
(2) Supply to actuators.

M12 male connector

Bus module connection on CANopen and DeviceNet bus

(1) Supply to splitter box and sensors.
(2) Supply to actuators.

(1) Supply to splitter box and sensors.
(2) Supply to actuators.

Bus output
Internal bus output
Internal bus Internal bus

M12 female connector

FTX CY1212

Presentation, functions:	Description:	Connections:	Characteristics:
pages $36-42$	page 43	pages 44, 45	pages 46, 47

Power supplies

Power supplies for d.c. control circuits

Functions

Type of product

Nominal power

Pages

Device type
\square

Supplies for d.c. control circuits

Single-phase, modular switch mode power supplies

$=-12 \mathrm{~V}$	-24 V
adjustable	adjustable

Single-phase, regulated switch mode power supplies

Primary switch mode electronic power supplies.

Integrated, against overloads and short-circuits, with automatic reset. | Integrated, against |
| :--- |
| overloads and |
| short-circuits, |
| with manual and |
| automatic reset. |

Output indicator lamp. Output and input indicator lamp.

ABL 7RM

57
(1) Compatible input voltage, not indicated on the product.

Industrial applications.
In-line continuous process equipment, machine tools, injection presses, etc.
120 and 240 W
$\sim 2 \times 380$ to 415 V 2-phase

240 and 480 W	120 W	240 to 960 W
$\sim 3 \times 380$ to $\sim 3 \times 400$ to 520 V 3-phase 415 V 3-phase		

 $=24 \mathrm{~V}$
adjustable
adjustable

Primary switch mode electronic power supplies.

Integrated, against overloads and short-circuits, with manual and automatic reset.

Output indicator lamp.
\square

Direct on $_$rail (except ABL 7UPS 24200 and ABL 7UPS24400)

cl.B

EN 50081-1, EN 50082-2, EN 60950

ABL 7REQ

59
59

Power supplies

Power supplies for d.c. control circuits
Phaseo ${ }^{\circledR}$ modular regulated power supplies

Modular switch mode power supplies ABL 7RM

The ABL 7RM range of power supplies is designed to provide the d.c. voltage necessary for the control circuits of automation system equipment. Comprising 3 products, this range meets the needs encountered in industrial, commercial and residential applications. These single-phase, modular, electronic switch mode power supplies provide a quality of output current which is suitable for the loads supplied and compatible with the Zelio ${ }^{\circledR}$ Logic range, making them ideal partners. Clear guidelines are given on selecting the upstream protection devices which are often used with them, and thus a comprehensive solution is provided that can be used in total safety.

These switch mode power supplies are totally electronic and regulated. The use of electronics makes it possible to significantly improve the performance of these power supplies, which offer:
■ very compact size,

- integrated overload, short-circuit, overvoltage and undervoltage protection,

■ a very wide range of permissible input voltages, without any adjustment,

- a high degree of output voltage stability,

■ good performance,

- considerably reduced weight,
- a modular format allowing integration into panels.

Phaseo power supplies deliver a voltage which is precise to 3%, whatever the load and whatever the type of mains supply, within a range of 85 to 264 V for singlephase. Conforming to IEC standards and UL and CSA certified, they are suitable for universal use. The inclusion of overload and short-circuit protection makes downstream protection unnecessary if discrimination is not required.
All the products are fitted with an output voltage adjustment potentiometer in order to be able to compensate for any line voltage drops in installations with long cable runs. These power supplies are designed for direct mounting on 35 and $75 \mathrm{~mm} _$rails, or on a mounting plate using the retractable mounting lugs.

These power supplies are single-phase and three references are available:

- ABL 7RM2401 (24 V =-/1.3 A),
- ABL 7RM24025 ($24 \mathrm{~V}=-/ 2.5 \mathrm{~A}$),
- ABL 7RM1202 (12 V =-/1.9 A).

Description

ABL 7RM2401
ABL 7RM1202

ABL 7RM24025

$12.5 \mathrm{~mm}^{2}$ (\#14 AWG) screw terminals for connection of the incoming a.c. supply voltage.
2 Output voltage adjustment potentiometer.
$32.5 \mathrm{~mm}^{2}$ (\#14 AWG) screw terminals for connection of the output voltage.
4 LED indicating presence of the d.c. output voltage.
5 Retractable mounting lugs.

Power supplies

Power supplies for d.c. control circuits
 Phaseo ${ }^{\circledR}$ modular regulated power supplies

Power supply type			ABL 7RM1202	ABL 7RM2401	ABL 7RM24025
Certifications			UL - CSA - TÜV		
Conforming to standards	Safety		IEC/EN 60950-1 - IEC/EN 61131-2/A11 \quad IEC/EN 60950-1		
	EMC		IEC/EN 61000-6-2 (IEC/EN 61000-6-1), IEC/EN 61000-6-3		
Input circuit					
LED indication			No		
Input voltage	Nominal values	V	~ 100 to 240		
	Permissible values	V	~ 85 to 264		
	Permissible frequencies	Hz	47 to 63		
	Efficiency at nominal load		> 80\%		> 84\%
	Current consumption	A	0.5 (100 V)/0.3 (240 V)	0.6 (100 V)/0.4 (240 V)	1.2 (120 V)/0.7 (240 V)
	Current at switch-on	A	<20		<90 for 1 ms
	Power factor		0.6		
Output circuit					
LED indication			Green LED		
Nominal output voltage		V	--- 12	--- 24	
Nominal output current		A	1.9 1.3 2.5		
Precision	Output voltage		Adjustable from 100 to 120%		
	Line and load regulation			± 3 \%	
	Residual ripple - interference	mV	200	250	200
Micro-breaks	Holding time for I max and Ue min	ms	> 10		
Protection	Against short-circuits		Permanent/Thermal protection		
	Against overcurrent, cold state		<1.7 In	< 1.6 ln	$<1.4 \mathrm{ln}$
	Against overvoltage	V	< 10.5	<19	
Operating characteristics					
Connections	Input	$\begin{aligned} & \mathrm{mm}^{2} \\ & \text { AWG } \end{aligned}$	1×2.5 (\#14 AWG) or 2×1.5 (\#16 AWG) screw terminals		
	Output	$\begin{aligned} & \mathrm{mm}^{2} \\ & \text { AWG } \end{aligned}$	1×2.5 (\#14 AWG) or 2×1.5 (\#16 AWG) screw terminals		
Environment	Storage temperature	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$	-25 to +70 (-13 to +158$)$		-40 to +70 (-40 to +158$)$
	Operating temperature	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$	-20 to $+55(-4$ to +131$)$		
	Maximum relative humidity		95 \%		
	Degree of protection		IP 20		
	Vibration		IEC/EN 61131-2, IEC/EN 60068-2-6 test Fc		
Operating position			Vertical		
Connections	Series		No		
	Parallel		Yes (same references)		
Dielectric strength	Input/output		$3000 \mathrm{Vac} / 50 \mathrm{~Hz} / 1 \mathrm{~min}$		
Protection class conforming to VDE 01061			Class II without PE		
Input fuse incorporated			Yes (not interchangeable)		
Emissions Immunity	Conducted/radiated		IEC/EN 61000-6-3, EN 55011, EN 55022 CI:B		
	Electrostatic discharge		IEC/EN 61000-6-2 (generic standard), IEC/EN 61000-4-2 (4 kV contact/8 kV air)		
	Electromagnetic		IEC/EN 61000-4-3 level 3 ($10 \mathrm{~V} / \mathrm{m}$)		
	Conducted interference		IEC/EN 61000-4-4 level 3 (2 kV), IEC/EN 61000-4-6 (10 V)		
	Mains interference		IEC/EN 61000-4-11		

Presentation:	References:	Dimensions:
page 54	page 57	page 57

Power supplies

Power supplies for d．c．control circuits Phaseo ${ }^{\circledR}$ modular regulated power supplies

Output characteristics

Exceeding the nominal power（only applicable to ABL 7RM1202 and ABL 7RM2401）

The ambient temperature is a determining factor which limits the power that an electronic power supply can deliver continuously．If the temperature around the electronic components is too high，their life will be significantly reduced．Conversely， a power supply can deliver more than its nominal power if the ambient temperature remains well below the nominal operating temperature．

The maximum ambient temperature for Phaseo power supplies is $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$ ． Below this temperature，uprating is possible up to 110% of the nominal power． The graph below shows the power（in relation to the nominal power）that the power supply can deliver continuously，according to the ambient temperature． Power supply ABL 7RM24025 cannot exceed the nominal power of 60 W ．

ABL 7RM24025
2 ABL 7RM1202 and ABL 7RM2401

Selection

Upstream protection of power supplies

Type of mains supply		$\sim 100 \mathrm{~V}$ singl	－phase		$\sim 240 \mathrm{~V}$ sing	－phase	
Type of protection		Thermal－magn circuit－breake		$\begin{aligned} & \text { Fuse } \\ & \text { gG } \end{aligned}$	Thermal－magn circuit－breake		Fuse，gG
		GB2（UL／IEC）	$\begin{aligned} & \text { C60N (IEC) } \\ & \text { C60N (UL) } \end{aligned}$		GB2（UL／IEC）	$\begin{aligned} & \text { C60N (IEC) } \\ & \text { C60N (UL) } \end{aligned}$	
ABL 7RM1202		GB2 ••06	$\begin{aligned} & 24580 \\ & 24516 \end{aligned}$	1 A	GB2 ・セ05	$\begin{array}{\|l\|} \hline 24494 \\ 24516 \end{array}$	1 A
ABL 7RM2401		GB2 ・セ06	$\begin{aligned} & 24580 \\ & 24516 \end{aligned}$	1 A	GB2 ・セ06	$\begin{array}{\|l\|} \hline 24580 \\ 24516 \end{array}$	1 A
ABL 7RM24025		GB2 ・セ08	$\begin{aligned} & 24582 \\ & 24518 \end{aligned}$	3 A	GB2 ・セ08	$\begin{array}{\|l\|} \hline 24582 \\ 24518 \end{array}$	3 A
Schemes							
GB2 CBee	GB2 CDee		B2 DBee		GB2 CS		

Presentation：	References：	Dimensions：
page 54	page 57	page 57

References, dimensions, scheme

Power supplies

Power supplies for d.c. control circuits
Phaseo ${ }^{\circledR}$ modular regulated power supplies

Modular regulated switch mode power supplies ABL 7RM (1)

	Mains input voltage 47 to 63 Hz	Output voltage	Nominal power	Nominal current	Auto-protect reset	Reference	Weight
	V	=-- V	W	A			kg
	100 to 240 Single-phase	12	22	1.9	Auto	ABL 7RM1202	0.180
	wide range	24	30	1.3	Auto	ABL 7RM2401	0.182
			60	2.5	Auto	ABL 7RM24025	0.255

ABL 7RM
(1) For additional products, please refer to our "Interfaces, I/O splitter boxes and power supplies" catalog.

Dimensions

Power supply ABL 7RMeee»

Scheme
ABL 7RMeeee

ABL 7 power supplies

The ABL 7 range of power supplies is designed to provide the d.c. voltage necessary for the control circuits of automation system equipment. Split into three families, this range meets all the needs encountered in industrial, commercial and residential applications. Single-phase or 3-phase, of the electronic switch mode type, they provide a quality of output which is suitable for the loads supplied and compatible with the mains supply available in the equipment. Clear guidelines are given for selecting protection devices which are often used with them and thus a comprehensive solution is provided, which can be used in total safety.

Phaseo switch mode power supplies

These switch mode power supplies are totally electronic and regulated. The use of electronics makes it possible to significantly improve the performance of these power supplies, which offer:

- very compact size,
- integrated overload, short-circuit, overvoltage and undervoltage protection,
- a very wide range of permissible input voltages, without any adjustment,
- a high degree of output voltage stability,
- good performance,
- LED indicators on the front panel.

Phaseo power supplies are available in single-phase and 3-phase versions. They deliver a voltage which is precise to 3%, whatever the load and whatever the type of mains supply, within a range of 85 to 264 V for single-phase, or 360 to 550 V for 3 -phase. Conforming to IEC standards and UL and CSA certified, they are suitable for universal use. The inclusion of overload and short-circuit protection makes downstream protection unnecessary if discrimination is not required.

ABL 7 RE and ABL 7 RP supplies are also equipped with an output undervoltage control which causes the product to trip if the output voltage drops below 19 V , in order to ensure that the voltage delivered is always usable by the actuators being supplied. All the products are fitted with an output voltage adjustment potentiometer in order to be able to compensate for any line voltage drops in installations with long cable runs. Most of our power supplies are designed for direct mounting on 35 and $75 \mathrm{~mm} \bumpeq$ rails.

These power supplies are available in single-phase and 3-phase versions and are split into three families:
Compact single-phase supply ABL 7CEM:

- power less than or equal to 30 W (1.2 A),
- compact size,
- for all low power equipment,
- suitable for use in automation system environments based on the Nano ${ }^{T M}$ PLC and Twido ${ }^{\circledR}$ PLC platforms, or in any automation system configuration requiring a $=-24 \mathrm{~V}$ supply.

Universal single-phase supplies ABL 7RE and ABL 7RP:

■ ABL 7RE

- power between $48 \mathrm{~W}(2 \mathrm{~A})$ and 240 W (10 A),
\square compact size,
- for all machine equipment,
\square suitable for use in automation system environments based on the Micro ${ }^{\text {TM }}$ PLC and Modicon ${ }^{\circledR}$ Premium ${ }^{\text {TM }}$ PLC platforms, or in any automation system configuration requiring a --24 V supply.

- ABL 7RP

- power between 60 W and $240 \mathrm{~W}(10 \mathrm{~A})$,
- output voltage available: $=12,24$ and 48 V depending on version, \square input filter (PFC) for commercial and residential environments (conforming to standard EN 61000-3-2),
- two operating modes possible for handling of overload and short-circuit faults:
- "AUTO" mode which provides automatic restarting of the power supply on elimination of the fault,
- "MANU" mode which requires manual resetting of the power supply to restart. Resetting is achieved by switching off the mains power.

Characteristics:	References:	Dimensions:
pages 55,56	page 57	57

Power supplies

Power supplies for d.c. control circuits
 Phaseo ${ }^{\circledR}$ regulated switch mode power supplies

Abstract

Phaseo switch mode power supplies (continued) 3-phase and single-phase process supplies ABL 7U and ABL 7REQ: - ABL 7UEQ - power between $120 \mathrm{~W}(10 \mathrm{~A})$ and $480 \mathrm{~W}(20 \mathrm{~A})$, - compact size, \square voltages between $3 \times 380 \mathrm{~V}$ and $3 \times 415 \mathrm{~V}$, \square for use in industrial applications, for all in-line or continuous process equipment, machine tools and injection presses, etc. \square suitable for use in automation system environments based on the Modicon ${ }^{\circledR}$ Premium ${ }^{\text {TM }}$ PLC and Modicon ${ }^{\circledR}$ Quantum ${ }^{\text {TM }}$ PLC platforms, or in any automation system configuration requiring a =-- 24 V supply.

\section*{- ABL 7UPS and ABL 7UES} \square power between $120 \mathrm{~W}(5 \mathrm{~A})$ and $960 \mathrm{~W}(40 \mathrm{~A})$. Identical to the ABL 7UEQ range, this power supply differs in that it features an extended input voltage range from 3×400 to $3 \times 520 \mathrm{~V}$ and includes a filter (PFC) which means that it can be connected directly to public mains supplies, in compliance with standard EN 61000-3-2. This product, for world-wide use, is UL and CSA certified. - ABL 7REQ - power between $120 \mathrm{~W}(5 \mathrm{~A})$ and 240 W (10 A), - compact size, \square can be connected to 2-phase input voltages between 380 V and 415 V , to replace older power supplies connected by only two wires. Economical, more competitive, yet with a smaller input voltage range it can, in certain cases, be used in place of the 3-phase versions.

Using =- 24 V

■ Using =- 24 V enables so-called protection installations (PELV) to be built. Using PELV is a measure designed to protect people from direct and indirect contact. Measures relating to these installations are defined in publication NF C 12-201 and in standard IEC 364-4-41.

- The application of these measures to the electrical equipment in machines is defined in standard NF EN 60204-1 and requires:
- that the voltage used is below 60 V d.c. in dry environments and below 30 V in damp environments,
- the connection of one side of the PELV circuit, or one point of the source, to the equipotential protection circuit associated with higher voltages,
- the use of switchgear and control gear on which measures have been taken to ensure "safety separation" between power circuits and control circuits.
■ A safety separation is necessary between power circuits and control circuits in PELV circuits. Its aim is to prevent the appearance of dangerous voltages in =-24 V safety circuits.
■ The reference standards involved are:
- IEC 61558-2-6 and EN 61558-2-6 (safety transformers),
- IEC 664 (coordination of isolation).

Telemecanique ${ }^{\circledR}$ power supplies meet these requirements.
■ Moreover, to ensure that these products will operate correctly in relation to the demands of their reinforced isolation, it is recommended that they be mounted and wired as indicated below:
\square they should be placed on an grounded mounting plate or rail,

- they should be connected using flexible cables, with a maximum of two wires per connection, and tightened to the nominal torque,
- conductors of the correct insulation class must be used.
- If the d.c. circuit is not connected to an equipotential protection conductor, an ground leakage detector will indicate any accidental ground faults (please consult your Regional Sales Office).

Operating voltage

■ The permissible tolerances for the operating voltage are listed in publications
IEC 1131-2 and DIN 19240.
■ For nominal voltage $\mathrm{Un}=-\mathrm{-} .24 \mathrm{~V}$, the extreme operating values are from-15 \% to $+20 \%$ of Un, whatever the supply fluctuations in the range -10% to $+6 \%$ (defined by standard IEC 38) and load variations in the range 0-100 \% of In. All Telemecanique ${ }^{\circledR}-24 \mathrm{~V}$ power supplies are designed to provide a voltage within this range.
■ It may be necessary to use a voltage measurement relay to detect when the normal voltage limits are being surpassed and to deal with the consequences of this (please consult your Regional Sales Office).

Characteristics:	References:	Dimensions:
pages 55,56	page 57	page 57

Selection of power supplies

The characteristics to be taken into account when selecting a power supply are:

- the required output voltage and current,
- the mains voltage available in the installation.

An initial selection can be made using the table opposite.
This may however result in several products being selected as suitable.
Other selection criteria must therefore be taken into account.

■ The quality of the mains power supply

The Phaseo range is the solution because it guarantees precision to 3% of the output voltage, whatever the load current and the input voltage. In addition, the wide input voltage range of Phaseo power supplies allows them to be connected to all mains supplies within the nominal range, without any adjustment.
The Phaseo RP family can also be connected to --- 110 and 220 V emergency supplies.

■ Harmonic pollution (power factor)

The current drawn by a power supply is not sinusoidal. This leads to the existence of harmonic currents which pollute the mains supply. European standard EN 61000-3-2 limits the harmonic currents produced by power supplies. This standard covers all devices between 75 W and 1000 W , drawing up to 16 A per phase, and connected directly to the public mains power supply. Devices connected downstream of a private, low voltage general transformer are therefore excluded.
Regulated switch mode supplies always produce harmonic currents; a filter circuit (Power Factor Correction or PFC) must therefore be added to comply with standard EN 61000-3-2.
Phaseo ABL 7RP, ABL 7UES and ABL 7UPS power supplies conform to standard EN 61000-3-2 and can therefore be connected directly to public mains power supplies.

■ Electromagnetic compatibility

Levels of conducted and radiated emissions are defined in standards EN 55011 and EN 55022.
The majority of products in the Phaseo range have class B certification and can be used without any restrictions due to their low emissions.
ABL 7CEM24003 and ABL 7CEM24006 power supplies have class A certification. It is recommended that they should not be used in the following equipment: trains, aircraft, nuclear applications and in any environment where malfunctioning could cause serious injuries or lead to death. These products are designed for use in industrial equipment and are not suitable for use in residential environments.

■ Behavior in the event of short-circuits

Phaseo power supplies are equipped with an electronic protection device. This protection device resets itself automatically on elimination of the fault (around 1 second for ABL 7 RE/RP, around 3 seconds for ABL 7 UE/UP/REQ) which avoids having to take any action or change a fuse. In addition, the Phaseo ABL 7RP/U/REQ ranges allow the user to select the reset mode in the event of a fault:

- in the "AUTO" position, resetting is automatic,
- in the "MANU" position, resetting occurs after elimination of the fault and after switching the mains power off and back on.
This feature allows Phaseo ABL 7RP/U/REQ power supplies to be used in installations where the risks associated with untimely restarting are significant.

■ Behavior in the event of phase failure
In the event of failure of one phase, all Phaseo 3-phase power supplies switch to relaxation mode for as long as the input voltage is below 450 V . For operation on higher voltages (e.g. 480 V), use of an upstream GV2 type residual current protection device is recommended.

■ Selection of reset mode

- on the ABL 7RP family of products:

By microswitch on the front panel of the product. - on the ABL 7U/REQ family of products:

By jumper on the front panel. Warning: selection of the function is only possible after the mains power supply has been switched off for at least 5 minutes. The jumper is moved using a pair of insulated, flat-nose pliers.

Presentation:	Characteristics:	References:
pages 58,59	pages $62-65$	page 67

Power supplies

Power supplies for d.c. control circuits
 Phaseo ${ }^{\circledR}$ regulated switch mode power supplies

Type of mains supply Rated mains supply voltage	Single-phase				2-phase	3-phase	
Rated mains supply voltage	$\begin{aligned} & \sim 100 \text { to } 240 \mathrm{~V} 50 / 60 \mathrm{~Hz} \\ & =110 \text { to } 220 \mathrm{~V}(1) \\ & \text { Wide range } \end{aligned}$			100 to 240 V $50 / 60 \mathrm{~Hz}$ Wide range	$\begin{aligned} & 2 \times 380 \text { to } 415 \mathrm{~V} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 3 \times 380 \text { to } 415 \mathrm{~V} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	3×400 to 520 V $50 / 60 \mathrm{~Hz}$ Wide range
Permissible variation	$\begin{aligned} & 85 \text { to } 264 \mathrm{~V}, 47 \text { to } 63 \mathrm{~Hz} \\ & =--100 \ldots . .250 \mathrm{~V}(1), \ldots-105 \ldots 370 \mathrm{~V} \text { (2) } \end{aligned}$			$\begin{aligned} & 85 \text { to } 264 \mathrm{~V} \\ & 47 \text { to } 63 \mathrm{~Hz} \end{aligned}$	$\begin{array}{\|l\|} \hline 340 \text { to } 460 \mathrm{~V} \\ 47 \text { to } 63 \mathrm{~Hz} \\ \hline \end{array}$	$\begin{aligned} & 340 \text { to } 460 \mathrm{~V} \\ & 47 \text { to } 63 \mathrm{~Hz} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 360 \text { to } 550 \mathrm{~V} \\ 47 \text { to } 63 \mathrm{~Hz} \\ \hline \end{array}$
Output voltage	12 V	48 V	24 V				
Output current			ABL 7CEM24003				
			ABL 7CEM24006				
			ABL 7CEM24012				
				ABL 7RE2402			
		ABL 7RP4					
			ABL 7RP2403	ABL 7RE2403			
	ABL 7RP1205		ABL 7RP2405	ABL 7RE2405	ABL 7REQ24050		ABL 7UES24050
			ABL 7RP2410	ABL 7RE2410	ABL 7REQ24100	ABL 7UEQ24100	
						ABL 7UEQ24200	
Conforming to EN 61000-3-2	Yes (not applicable for ABL 7CEM)			No	No	No	No
Integrated automatic protection	Yes Automatic or manual restart on ABL 7RP Automatic restart only on ABL 7CEM			Yes Automatic restart	Yes Automatic or manual restart		

(1) Values for ABL 7RP power supplies, not indicated on the product.
(2) Values for ABL TCEM power supplies, not indicated on the product.

Presentation:	Characteristics:	References:	
pages 58,59	pages $62-65$	page 67	Dimensions:

Power supplies

Power supplies for d.c. control circuits
Phaseo ${ }^{\circledR}$ regulated switch mode power supplies

Technical characteristics

Operating and environmental characteristics

Connections	Input	$\begin{aligned} & \mathrm{mm}^{2} \\ & \text { AWG } \end{aligned}$	$2 \times 2.5+$ ground (\#14 AWG)	
	Output	$\begin{aligned} & \mathbf{m m}^{2} \\ & \text { AWG } \end{aligned}$	2×2.5 (\#14 AWG)	$2 \times 2.5+$ ground (\#14 AWG), multiple output, depending on model
Ambient conditions	Storage temperature	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-25 to $+70(-13$ to +158$)$	
	Operating temperature	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-10 to $+60(+14$ to +140$)$ derating as from $50^{\circ} \mathrm{C}$ (+ 122), mounted vertically	0 to $+60(+32$ to +140$)$ derating as from $50^{\circ} \mathrm{C}(+122)$, mounted vertically
	Max. relative humidity		20 to 90 \%	95% without condensation or dripping water
	Degree of protection		IP 20 conforming to IEC 529	
	Vibrations		Conforming to IEC 61131-2	
Operating position			Vertical and horizontal (see derating curve, 64)	Vertical
MTBF at 40 ${ }^{\circ}$			$>100000 \mathrm{~h}$	
Connections	Series		Possible (see page 65)	
	Parallel		No	Possible (max. temperature $50^{\circ} \mathrm{C}$)
Dielectric strength	Input/output		$3000 \mathrm{~V} / 50$ and 60 Hz 1 min	$3000 \mathrm{~V} / 50$ and 60 Hz 1 min
	Input/ground		$2000 \mathrm{~V} / 50$ and 60 Hz 1 min	$3000 \mathrm{~V} / 50$ and 60 Hz 1 min
	Output/ground (and output/output)		$500 \mathrm{~V} / 50$ and 60 Hz 1 min	$500 \mathrm{~V} / 50$ and 60 Hz 1 min
Input fuse incorporated			Yes (not interchangeable)	
Disturbance			EN 50081-2 (generic)	EN 50081-1
	Conducted		EN 55011/EN 55022 class A (7 and 15 W) EN 55011/ EN 55022 class B (30 W)	EN 55011/EN 55022 class B
	Radiated		EN 55011/EN 55022 class B	
Immunity			IEC 61000-6-2 (generic)	
	Electrostatic discharge		EN 61000-4-2 (4 kV contact/8 kV air)	
	Electromagnetic		EN 61000-4-3 level 3 ($10 \mathrm{~V} / \mathrm{m}$)	
	Conducted interference		EN 61000-4-4 level 3 (2 kV), EN 61000-4-5, EN 61000-4-6 level 3, EN 61000-4-8 level 4	
	Mains interference		EN 1000-4-11 (voltage drops and cuts)	

Power supplies

Power supplies for d.c. control circuits
 Phaseo ${ }^{\circledR}$ regulated switch mode power supplies

Technical characteristics										
Type of power supply			ABL 7REQ24•	ABL 7UEQ24•	ABL 7UES24•	ABL 7UPS24•				
Product certifications			-			cULus, cURus and CSA				
Conforming to standards			IEC/EN 60950, FELV							
	Safety									
	EMC		EN 50081-1, EN 50082-2							
	Low frequency harmonic currents		-			EN 61000-3-2				
Input circuit										
LED indication			-							
Input voltages					$\sim 3 \times 400$ to 520					
	Rated values	v	$\sim 2 \times 380$ to 415	$\sim 3 \times 380$ to 415						
	Permissible values	V	$\sim 2 \times 340$ to 460	$\sim 3 \times 340$ to 460	$\sim 3 \times 360$ to 550					
	Permissible frequencies	Hz	50 to 60							
	Efficiency at nominal load		> 85 \%	> 90%						
	Current consumption									
	$\mathrm{Ue}=400 \mathrm{~V}$	A	$\begin{aligned} & 0.65(120 \mathrm{~W}) / 1.2 \\ & (240 \mathrm{~W}) \end{aligned}$	$\begin{aligned} & 0.75(240 \mathrm{~W}) / 1.5 \\ & (480 \mathrm{~W}) \end{aligned}$	0.7 (240 W)/1.2 (480 W)/1.7 (960 W)					
	Current at switch-on	A	< 35							
	Power factor		0.6	0.55	0.7	0.7/0.9 (960 W)				
2-phase operating mode		v	-	Relaxation if input voltage < ~ 450						
Output circuit										
LED indication			Green LED							
Nominal output voltage (U out)		v	-- 24							
Nominal output current		A	5/10	10/20	5	10/20/40				
Precision			Adjustable from 100 to 116\%							
	Output voltage									
	Line and load regulation		1% max							
	Residual ripple - interference	mV	<200 (peak-peak)							
Micro-breaks				10						
	Holding time for I max and Ve min	ms	15			Between 8 and 13				
Temporary overloads										
	Permissible inrush current (U out >19V)		See curves, page 65							
Protection			Permanent/automatic or normal restart							
	Short-circuit									
	Overload		$1.20 \mathrm{ln}<50 \mathrm{~ms}$							
	Overvoltage	v	28.5 typical							
	Undervoltage	V	19 typical							
Operating and environmental characteristics										
Connections	Input	$\underset{\mathrm{AWG}}{\mathrm{~mm}^{2}}$	2×1.5 to $2.5 \mathrm{~mm}^{2}+$ ground (\#16 to \# 14)							
	Output	$\begin{gathered} \mathrm{mm}^{2} \\ \text { AWG } \end{gathered}$	$\begin{aligned} & 4 \times 1.5 \text { to } 2.5 \mathrm{~mm}^{2} \\ & (\# 16 \text { to } \# 14 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 4 \times 4 \text { to } 6 \mathrm{~mm}^{2} \\ & \text { (\#10 AWG) } \end{aligned}$	$\begin{aligned} & 4 \times 1.5 \text { to } 2.5 \mathrm{~mm}^{2} \\ & \text { (\#16 to \#14 AWG) } \end{aligned}$	$\begin{aligned} & 4 \times 1.5 \text { to } 2.5 \mathrm{~mm}^{2} \\ & (\# 16 \text { to } \# 14 \mathrm{AWG}) 240 \mathrm{~W} \\ & 4 \times 4 \mathrm{to} 6 \mathrm{~mm}^{2} \\ & (\# 10 \mathrm{AWG}) 480 \mathrm{~W} \\ & 4 \times 4 \mathrm{to} 10 \mathrm{~mm}^{2} \\ & (\# 8 \mathrm{AWG}) 960 \mathrm{~W} \end{aligned}$				
Ambient conditions	Storage temperature	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	-25 to + 70 (-13 to +158)							
	Operating temperature	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	0 to +60 (+ 32 to +140)							
	Maximum relative humidity		30 to 90 \%							
	Degree of protection		IP 20							
	Vibrations		Conforming to IEC	61131-2						
Operating position			Vertical							
MTBF			> 100000 h							
Connections	Series		Possible see page 65							
	Parallel		Possible see page 65							
$\overline{\text { Dielectric }}$ strength	Input/output		$3750 \mathrm{~V} / 50$ and 60 Hz 1 min							
	Input/ground		3500 V/50 and 60 Hz 1 min							
	Output/ground (and output/output)		$500 \mathrm{~V} / 50$ and 60 Hz 1 min							
Input fuse incorporated			No							
Disturbance	Conducted/radiated		EN 55011/EN 550	22 - class B						
Immunity	Electrostatic discharge		EN 61000-4-2 (4 kV contact/8 kV air)							
	Electromagnetic		EN 61000-4-3 level 3 ($10 \mathrm{~V} / \mathrm{m}$)							
	Conducted interference		EN 61000-4-4 level 3 (2 kV), EN 61000-4-5, EN 61000-4-6 level3, EN 61000-4-8 level 4 (for ABL 7RE/RP)							
	Mains interference		EN 61000-4-11 (voltage drops and cuts)							

page 69

Power supplies

Power supplies for d.c. control circuits
Phaseo ${ }^{\circledR}$ regulated switch mode power supplies

Derating

The ambient temperature is a determining factor which limits the power that an electronic power supply can deliver continuously. If the temperature around the electronic components is too high, their life will be significantly reduced. Conversely, a power supply can deliver more than its nominal power if the ambient temperature remains largely below the rated operating temperature.

The rated ambient temperature for Phaseo power supplies is $50^{\circ} \mathrm{C}\left(+122^{\circ} \mathrm{F}\right)$. Above this, derating is necessary up to a maximum temperature of $60^{\circ} \mathrm{C}\left(+140^{\circ} \mathrm{F}\right)$.

The graph below shows the power (in relation to the nominal power) which the power supply can deliver continuously, according to the ambient temperature.

1 ABL 7RE, ABL 7RP, ABL 7U mounted vertically
2 ABL 7CEM mounted vertically
3 ABL 7CEM mounted horizontally

Derating should be considered in extreme operating conditions:

- intensive operation (output current permanently close to the nominal current, combined with a high ambient temperature),
- output voltage set above 24 V (to compensate for line voltage drops, for example),
- parallel connection to increase the total power.

General rules to be complied with

Intensive operation	See derating on above graph. Example for ABL 7RE: - without derating, from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$, -derating of nominal current by 2%, per additional ${ }^{\circ} \mathrm{C}$, up to $60^{\circ} \mathrm{C}(+140$ $\left.{ }^{\circ} \mathrm{F}\right)$.		
Rise in output	The nominal power is fixed. voltage		
Increasing the output voltage means that the current delivered must be reduced			
Parallel connection to increase the power (except ABL 7CEM)	The total power is equal to the sum of the power supplies used, but the maximum ambient temperature for operation is $50^{\circ} \mathrm{C}\left(+122{ }^{\circ} \mathrm{F}\right)$.		To improve heat dissipation, the power supplies must not be in contact
:---			
with each other			

In all cases, there must be adequate convection round the products to ensure easier cooling. There must be a clear space of 50 mm (1.97") above and below Phaseo power supplies and of $15 \mathrm{~mm}(0.59$ ") at the sides.

Presentation:	References:	Dimensions:
pages 58,59	page 67	page 68

Output characteristics

（continued）

Power supplies

Power supplies for d．c．control circuits
 Phaseo ${ }^{\circledR}$ regulated switch mode power supplies

Load limit

Temporary overloads

ABL 7U
T（ms）

ABL 7RE24ee／ABL 7RPeee๑
ABL 7Uee24ee／ABL 7REQeeッe

1 ABL 7RE24ee／ABL 7RP•e＊e
2 ABL 7U•e24••／ABL 7REQ•eゃセ

ABL 7RE／ABL 7RP

Example：For an ABL 7UPS24ee๗ power supply with 50 \％loading．
（I out＝ 50% ），this power supply can absorb a current peak of $1.6 \mathrm{x} \ln$ for 250 ms with an output voltage $\geqslant 19 \mathrm{~V}$ ．

Series or parallel connection

Series connection

Family	Series	Parallel
ABL 7CEM	2 products $\max (1)$	No
ABL 7RE／RP	2 products \max	2 products max
ABL 7U／REQ	2 products \max	2 products max

（1） 2 Shottky diodes 2 A／100 V on ABL 7CEM only．

Presentation：	References：	Dimensions：
pages 58，59	page 67	page 68

Power supplies

Power supplies for d．c．control circuits
Phaseo ${ }^{\circledR}$ regulated switch mode power supplies Upstream protection

ABL 7CEM，ABL 7RE and ABL 7RP power supplies：protection of the power supply line

Type of mains supply	$\sim 100 \mathrm{~V}$ single－phase			$\sim 240 \mathrm{~V}$ single－phase		
Type of protection	Thermal－magnetic circuit－breaker		gG fuse	Thermal－magnetic circuit－breaker		gG fuse
	GB2（ULIEC）	$\begin{aligned} & \text { C60N (IEC) } \\ & \text { C60N (UL) } \end{aligned}$		GB2（ULIEC）	$\begin{aligned} & \text { C60N (IEC) } \\ & \text { C60N (UL) } \end{aligned}$	
ABL 7CEM24003	GB2 \bullet 05	$\begin{array}{\|l\|} 24494 \\ 24516 \end{array}$	1 A	GB2 ••05	$\begin{aligned} & 24494 \\ & 24516 \end{aligned}$	1 A
ABL 7CEM24006	GB2 ・セ05	$\begin{array}{\|l\|} \hline 24494 \\ 24516 \end{array}$	1 A	GB2 ••05	$\begin{aligned} & 24494 \\ & 24516 \end{aligned}$	1 A
ABL 7CEM24012	GB2 •e06	$\begin{array}{\|l\|} 24580 \\ 24516 \end{array}$	1 A	GB2 ••06	$\begin{aligned} & 24580 \\ & 24516 \end{aligned}$	1 A
ABL 7RE2402	GB2 \bullet 07	$\begin{array}{\|l\|} \hline 24581 \\ 24517 \end{array}$	2A	GB2 ・セ06	$\begin{aligned} & 24580 \\ & 24516 \end{aligned}$	1 A
ABL 7RE2403	GB2 •e07	$\begin{array}{\|l\|} \hline 24581 \\ 24517 \end{array}$	2 A	GB2 ・ャ06	$\begin{aligned} & 24580 \\ & 24516 \end{aligned}$	2 A
ABL 7RE2405	GB2 ・セ08	$\begin{array}{\|l\|} \hline 24582 \\ 24518 \end{array}$	4 A	GB2 ••07	$\begin{aligned} & 24581 \\ & 24517 \end{aligned}$	2 A
ABL 7RE2410	GB2 $\bullet \bullet 12$	$\begin{aligned} & 24584 \\ & 24520 \end{aligned}$	6 A	GB2 ••08	$\begin{aligned} & 24582 \\ & 24518 \end{aligned}$	3 A
ABL 7RP1205	GB2 •e06	$\begin{array}{\|l\|} \hline 24580 \\ 24516 \end{array}$	2 A	GB2 •＠06	$\begin{aligned} & 24580 \\ & 24516 \end{aligned}$	1 A
ABL 7RP2403	GB2 •e07	$\begin{array}{\|l\|} \hline 24581 \\ 24517 \end{array}$	2 A	GB2 •＠06	$\begin{aligned} & 24580 \\ & 24516 \end{aligned}$	1 A
ABL 7RP2405	GB2 •e07	$\begin{array}{\|l\|} \hline 24581 \\ 24517 \end{array}$	2 A	GB2 ・ャ06	$\begin{aligned} & 24580 \\ & 24516 \end{aligned}$	1 A
ABL 7RP2410	GB2 ••09	$\begin{array}{\|l\|} \hline 24583 \\ 24519 \end{array}$	4 A	GB2 ••07	$\begin{aligned} & 24581 \\ & 24517 \end{aligned}$	2 A
ABL 7RP4803	GB2 \bullet 07	$\begin{array}{\|l\|} \hline 24581 \\ 24517 \end{array}$	2 A	GB2 •＠06	$\begin{aligned} & 24580 \\ & 24516 \end{aligned}$	1 A

ABL 7REQ power supplies：protection of the power supply line

Type of mains supply	～ 400 V 2－phase		
Type of protection	Thermal－magn	c circuit－breaker	gG fuse
	$\begin{aligned} & \text { 2-pole: } \\ & \text { GB2 DBe(UL/ } \\ & \text { IEC) } \end{aligned}$	$\begin{aligned} & \text { C60N (IEC) } \\ & \text { C60N (UL) } \end{aligned}$	
ABL 7REQ24050	GB2 DB16	$\begin{aligned} & 24586 \\ & 24522 \end{aligned}$	10 A
ABL 7REQ24100	GB2 DB16	$\begin{aligned} & 24586 \\ & 24522 \end{aligned}$	10 A

ABL 7UEQ，ABL 7UES and ABL 7UPS power supplies：protection of the power supply line

Type of mains supply		~ 400 to 480 V 3 －pole			
Type of protection		Thermal－magnetic circuit－breaker		gG fuse	
		3 －pole： GV2 MEe॰	$\begin{aligned} & \text { C60N (IEC) } \\ & \text { C60N (UL) } \end{aligned}$		
ABL 7UEQ24100		GV2 ME08	$\begin{aligned} & 24598 \\ & 24535 \end{aligned}$	4 A	
ABL 7UEQ24200		GV2 ME08	$\begin{aligned} & 24601 \\ & 24538 \end{aligned}$	10 A	
ABL 7UES24050		GV2 ME08	$\begin{aligned} & 24596 \\ & 24533 \\ & \hline \end{aligned}$	2 A	
ABL 7UPS24100		GV2 ME08	$\begin{aligned} & 24596 \\ & 24533 \\ & \hline \end{aligned}$	2 A	
ABL 7UPS24200		GV2 ME08	$\begin{aligned} & 24597 \\ & 24534 \end{aligned}$	3 A	
ABL 7UPS24400		GV2 ME08	$\begin{aligned} & 24598 \\ & 24535 \end{aligned}$	4 A	
Schemes					
GB2 CBoe	GB2 CDoe		GB2 DBe0		GB2 CSee

Presentation：	References：	Dimensions：
pages page 58，page 59	page page 67	page page 68

Power supplies

Power supplies for d.c. control circuits
 Phaseo ${ }^{\circledR}$ regulated switch mode power supplies

ABL 7CEM

ABL 7RE2405 ABL 7RP2405 ABL 7RP4803

ABL 7P0000

ABL-7REQ

ABL 7UPS

ABL 7CEM single-phase regulated switch mode power supplies
$\left.\begin{array}{llllllll}\begin{array}{l}\text { Mains } \\ \text { input voltage } \\ \text { 47...63 Hz }\end{array} & \begin{array}{l}\text { Output } \\ \text { voltage }\end{array} & \begin{array}{l}\text { Nominal } \\ \text { power }\end{array} & \begin{array}{l}\text { Nominal } \\ \text { current }\end{array} & \begin{array}{l}\text { Auto-protect Conforming } \\ \text { reset } \\ \text { to standard } \\ \text { EN } 61000-3-2\end{array} & \text { Reference }\end{array}\right]$ Weight

ABL 7RE single-phase regulated switch mode power supplies

Mains input voltage $47 . . .63 \mathrm{~Hz}$	Output voltage	Nominal power	Nominal current	Auto-protect reset	Conforming to standard EN 61000-3-2	Reference	Weight
V	--- V	W	A				kg
~ 100 to 240 single-phase wide range	24	48	2	auto	-	ABL 7RE2402	0.520
		72	3	auto	no	ABL 7RE2403	0.520
		120	5	auto	no	ABL 7RE2405	1.000
		240	10	auto	no	ABL 7RE2410	2.200

ABL 7RP single-phase regulated switch mode power supplies

Mains input voltage $47 . . .63 \mathrm{~Hz}$	Output voltage	Nominal power	Nominal current	Auto-prot reset		Reference	Weight
V	=-- V	W	A				kg
$\begin{aligned} & \text { ~ } 100 . . .240 \\ & \text { single-phase } \\ & \text { wide range } \\ & =-110 . . .220 \text { (1) } \end{aligned}$	12	60	5	auto/man	yes	ABL 7RP1205	1.000
	24	72	3	auto/man	yes	ABL 7RP2403	0.520
		120	5	auto/man	yes	ABL 7RP2405	1.000
		240	10	auto/man	yes	ABL 7RP2410	2.200
	48	144	2.5	auto/man	yes	ABL 7RP4803	1.000
~ 100 to 240 single-phase wide range	24	480	20	auto/man	yes	ABL 7RPM24200	2.300

ABL 7U 3-phase regulated switch mode power supplies

Mains input voltage $47 . . .63 \mathrm{~Hz}$	Output voltage	Nominal power	Nominal current	Auto-prot reset	Conforming to standard EN 61000-3-2	Reference	Weight
V	=-- V	W	A				kg
$\sim 3 \times 380$ to 415	24	240	10	auto/man	no	ABL 7UEQ24100	1.200
		480	20	auto/man	no	ABL 7UEQ24200	2.100
$\sim 3 \times 400$ to 520	24	120	5	auto/man	yes	ABL 7UES24050	1.300
		240	10	auto/man	yes	ABL 7UPS24100	1.300
		480	20	auto/man	yes	ABL 7UPS24200	2.300
		960	40	auto/man	yes	ABL 7UPS24400	4.500

(1) Compatible input voltage.

Presentation : pages page 58, page 59	Characteristics: pages page 62 - page 65	Dimensions: page page 68	Schemes : page page 69

Power supplies

Power supplies for d.c. control circuits
Phaseo ${ }^{\circledR}$ regulated switch mode power supplies

ABL 7RE2400/ABL 7RP0000
Common side view
Mounting on 35 and 75 mm rails

ABL 7CEM24000
ABL 7CEM24003

Panel mounting

(1) $2 \times$ M4 or 2×84.5

ABL 7UEQ24200

ABL 7RE2405 ABL 7RP1205/2405/4803

ABL 7RE2410 ABL 7RP2410

ABL 7REQ24eee/ABL 7UEQ24100/ABL 7UES24050/ ABL 7UPS24100

ABL	P	a
	mm (inches)	mm (inches)
7REQ24050	$130\left(5.11^{\prime \prime}\right)$	-
7REQ24100	$154\left(6.06^{\prime \prime}\right)$	-
7UEQ24100	$154\left(6.06^{\prime \prime}\right)$	-
7UES24050	$171\left(6.73^{\prime \prime}\right)$	$15\left(0.59^{\prime \prime}\right.$
7UPS24100	$171\left(6.73^{\prime \prime}\right)$	$15\left(0.59^{\prime \prime}\right)$

ABL 7UPS24200

ABL 7UPS24400

Presentation:		
pages page 58, page 59	Characteristics:	References:
pages page 62 - page 65	page page 67	page page 69

Power supplies

Power supplies for d.c. control circuits
Phaseo ${ }^{\circledR}$ regulated switch mode power supplies

ABL 7RE2402/2403

ABL 7RP2403

ABL 7CEM24•0॰

ABL 7REQ24e0•

ABL 7RE2405

ABL 7RP1205/2405/4803

ABL 7RE2410

ABL 7RP2410

ABL 7UEeeee•

ABL 7UPSeeeee and 7UES

ABE 9C1240C23 . . . 8	FTB 1DN16EM0 . . . 28	FTX CN3203	29
ABE 9C1240C23 . . . 9	FTB 1DN16EP0 . . . 28	FTX CN3203	48
ABE 9C1240L05 8	FTB 1DP08E08CM0 . 28	FTX CN3206	29
ABE 9C1240L05 9	FTB 1DP08E08SP0 . 28	FTX CN3206	48
ABE 9C1240L10 8	FTB 1DP12E04SP0 . 28	FTX CN3210	29
ABE 9C1240L10 9	FTB 1DP16CM0 . . . 28	FTX CN3210	48
ABE 9C1240M 9	FTB 1DP16CP0 . . . 28	FTX CN3220	29
ABE 9C1241C23 . . . 8	FTB 1DP16EM0 . . . 28	FTX CN3220	48
ABE 9C1241C23 . . . 9	FTB 1DP16EP0 . . . 28	FTX CN3230	29
ABE 9C1241L05 8	FTB 1IB08E08SP1 . . 28	FTX CN3230	48
ABE 9C1241L05 9	FTB 1IB12E04SP1 . . 28	FTX CN3250	29
ABE 9C1241L10 8	FTB 1IB16CP1 28	FTX CN3250	48
ABE 9C1241L10 9	FTB 1IB16EP1. 28	FTX CNCT1	9
ABE 9C1241M 9	FTM 1AE04C12C . . 48	FTX CNCT1	9
ABE 9C1280C23 . . . 8	FTM 1AE04C12T . . 48	FTX CNCT1	9
ABE 9C1280C23 . . . 9	FTM 1AS04C12C . . 48	FTX CNTL12	29
ABE 9C1280L05 9	FTM 1AS04C12T . . 48	FTX CNTL12	48
ABE 9C1280L10 8	FTM 1CN10 48	FTX CPE10	29
ABE 9C1280L10 9	FTM 1DD08C08 . . . 48	FTX CY1208	30
ABE 9C1280M 9	FTM 1DD08C08E . . . 48	FTX CY1208	49
ABE 9C1281C23 . . . 8	FTM 1DD08C12 . . . 48	FTX CY1208	9
ABE 9C1281C23 ... 9	FTM 1DD08C12E . . . 48	FTX CY1212	30
ABE 9C1281L05 9	FTM 1DD16C12 . . . 48	FTX CY1212	49
ABE 9C1281L05 8	FTM 1DD16C12E . . . 48	FTX CY1212	
ABE 9C1281L10 9	FTM 1DE08C08 . . . 48	FTX CY1212	9
ABE 9C1281M 9	FTM 1DE08C08E . . . 48	FTX DG12	30
ABE 9CM12C 9	FTM 1DE08C12 . . . 48	FTX DG12	49
ABE 9XCA1405 9	FTM 1DE08C12E . . 48	FTX DP1203	9
ABE 9XCA1410 9	FTM 1DE16C12 . . . 48	FTX DP1203	48
ABE 9XCA1805	FTM 1DE16C12E . . . 48	FTX DP1206	29
ABE 9XCA1810	FTM 1DN10 48	FTX DP1206	48
ABE 9XLA10 9	FTM 1DP10 48	FTX DP1210	29
ABL 7CEM24003 . . 67	FTX BLA10 30	FTX DP1210	48
ABL 7CEM24006 . . 67	FTX C78B 30	FTX DP1220	29
ABL 7CEM24012 . . 67	FTX C78F5 30	FTX DP1220	48
ABL 7RE2402 67	FTX C78F5 49	FTX DP1230	29
ABL 7RE2403 67	FTX C78M5 30	FTX DP1230	48
ABL 7RE2405 67	FTX C78M5 49	FTX DP1250	29
ABL 7RE2410 67	FTX CA3103 49	FTX DP1250	48
ABL 7REQ24050 . . 67	FTX CA3106 49	FTX DP12F5	29
ABL 7REQ24100 . . 67	FTX CA3110 49	FTX DP12F5	49
ABL 7RM1202 57	FTX CA3120 49	FTX DP12M5	29
ABL 7RM2401 57	FTX CA3130 49	FTX DP12M5	49
ABL 7RM24025 ... 57	FTX CA3150 49	FTX DP2115	9
ABL 7RP1205 67	FTX CA3203 49	FTX DP2115	9
ABL 7RP2403 67	FTX CA3206 49	FTX DP2115	49
ABL 7RP2405 67	FTX CA3210 49	FTX DP2130	29
ABL 7RP2410 67	FTX CA3220 49	FTX DP2130	29
ABL 7RP4803 67	FTX CA3230 49	FTX DP2130	49
ABL 7RPM24200 . . 67	FTX CA3250 49	FTX DP2150	29
ABL 7UEQ24100 . . 67	FTX CB3203 49	FTX DP2150	29
ABL 7UEQ24200 . . 67	FTX CB3206 49	FTX DP2150	49
ABL 7UES24050 . . 67	FTX CB3210 49	FTX DP2206	29
ABL 7UPS24100 . . 67	FTX CB3220 49	FTX DP2206	29
ABL 7UPS24200 . . 67	FTX CB3230 49	FTX DP2206	49
ABL 7UPS24400 . . 67	FTX CB3250 49	FTX DP2210	29
FTB 1CN08E08CM0 . 28	FTX CBTL12 49	FTX DP2210	29
FTB 1CN08E08SP0 . 28	FTX CM08B 30	FTX DP2210	49
FTB 1CN12E04SP0 . 28	FTX CM08B 49	FTX DP2220	29
FTB 1CN16CM0 . . . 28	FTX CM08B 9	FTX DP2220	29
FTB 1CN16CP0 . . . 28	FTX CM12B 30	FTX DP2220	49
FTB 1CN16EM0 . . . 28	FTX CM12B 49	FTX DP2250	29
FTB 1CN16EP0 . . . 28	FTX CM12B 8	FTX DP2250	29
FTB 1DN08E08CM0 . 28	FTX CM12B 9	FTX DP2250	49
FTB 1DN08E08SP0 . 28	FTX CN12F5 29	FTX DP3203	29
FTB 1DN12E04SP0 . 28	FTX CN12F5 48	FTX DP3203	48
FTB 1DN16CM0 . . . 28	FTX CN12M5 29	FTX DP3206	
FTB 1DN16CP0 . . . 28	FTX CN12M5 48	FTX DP3206	

Owing to changes in standards and equipment, the characteristics 1415 South Roselle Road
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

[^0]: (1) To be wired by user.

